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Abstract

In testing problems, neutral-data comparisons assess evidence in a parallel manner as Bayes factors,
but are drastically less sensitive to scale parameters of the prior, and are thus suitable for use with vague
priors. This article proposes a calibration rule for neutral-data comparisons that is motivated from a well
known connection between unit-information priors and the Schwarz criterion. These ideas are examined
and illustrated on data exemplifying the Behrens-Fisher problem and in the analysis of two-way tables.
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1 Introduction
Neutral-data comparisons were introduced in Spitzner (2011) as an approach to Bayesian testing that
avoids concerns over the sensitivity of Bayes factors to prior dispersion. These quantities are, for present
purposes, calibrated Bayes factors (although they have an independent interpretation), whose calibration
targets an imaginary “neutral” data set that is presumed to exhibit no more evidence for one model under
test than the other. If BF01(Y ) is the Bayes factor assessing models M0 vs M1, the corresponding
neutral-data comparison is

NDC01(Y ) = BF01(Y )/BF01(Ỹ ), (1)

where Ỹ is neutral data. See Spitzner (2011) for additional perspectives on neutral data and NDC01(Y ).
A short summary of the underlying motivation for (1) is provided in the appendix.

A central concern in the use of neutral-data comparisons is the manner of specifying Ỹ . This article
explores a proposed scheme that connects neutral-data comparisons to the criterion of Schwarz (1978)
(a.k.a, the Bayesian information criterion, BIC), as it is understood through Kass and Wasserman’s (1995)
theory of “unit-information priors.” To illustrate, consider the simple Gaussian case in which the data are
Y = (Y1, . . . , Yn), for independent Yi, the modelM0 has Yi ∼ G(0, 1), and modelM1 has Yi|θ ∼ G(θ, 1)
with θ ∼ G(0, τ2). The Bayes factor in this case is

BF01(Y ) = (1 + τ2n)1/2e−
1
2
wZ2

, (2)

where w = τ2n/(1 + τ2n) and Z = n−1/2∑n
i=1 Yi. Kass and Wasserman (1995) highlight the particular

setting τ2 = 1 as defining a “unit-information prior” within this context, and note that the log-Bayes factor is
then approximated by the corresponding Schwarz criterion statistic,

S01(Y ) = −1

2
Z2 +

1

2
logn (3)
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Noting certain broad generalizations of this phenomenon, Kass and Wasserman conclude that expS01(Y )
is an “interesting approximate Bayes factor, and thus a potentially useful quantification of evidence.” (p.
928). Upon setting Ỹ in such a way that the neutral-data version of Z2 is Z̃2 = w−1 log(1/τ2 + n), the
resulting neutral-data comparison is

NDC01(Y ) = (1/τ2 + n)1/2e−
1
2
wZ2

. (4)

One sees from this formula that NDC01(Y ) = BF01(Y ) when τ2 = 1, and NDC01(Y ) → expS01(Y ) as
τ2 → ∞. Thus, a neutral-data comparison, in its formulation above, defines a spectrum of assessments,
indexed by τ2, whose endpoint on one side is a Bayes factor and the exponentiated Schwarz criterion on
the other.

Such positioning highlights how a neutral-data comparison modulates the sensitivity of a Bayes factor
to prior dispersion. Whereas drastic changes in the prior scale parameter, τ2, will result in similarly drastic
changes in the value produced by a Bayes factor, the range of possible values produced by a neutral-data
comparison roughly matches the variation typically observed in Bayesian estimation, e.g., in the posterior
mean under M1. Relative to the Schwarz criterion, the advantage of neutral-data comparisons is that it
depends on τ2, and is therefore responsive to subjective knowledge, as would be desired of any Bayesian
procedure. The methodology developed in this article is therefore intended for scenarios in which some
crude picture of prior knowledge is available, but a precise articulation has not yet been made, either due
to lack of resources or lack of access to a suitable expert. (The author conjectures that this is the most
widespread scenario encountered in statistical practice.) Reflecting the two endpoints of the spectrum
alluded to above, the statistic (1) would be justly labelled a “robust” Bayes factor or an exponentiated
“subjective” Schwartz criterion.

Closer examination of the neutral-data comparison (4) hints at the central idea of the proposed scheme.
By solving (1), the reader quickly sees that the imaginary data Ỹ has been chosen to make BF01(Ỹ ) =
τ , which is relevant for suggesting a certain precise characterization of “neutrality.” In particular, one
should notice that BF01(Ỹ ) = 1 precisely when τ2 = 1, the setting of a unit-information prior. The
proposed calibration rule is thereby revealed to be that neutral data are to yield neutral evidence under a
unit-information prior. The task carried out in the discussion below to extend this rule to broader scenarios,
including those involving non-Gaussian likelihood functions and nuisance parameters.

The reader may ponder a straightforward modification of the calibration rule as follows: “neutral data
are to yield neutral evidence under a X prior,” where X is any prior that is well established as serving in the
role of a default prior for Bayes factors. For instance, the priors associated with the intrinsic Bayes factor of
Berger and Pericchi (1996) and fractional Bayes factor of O’Hagan (1995) are notable potential substitutes
for X, and will be examined briefly in what follows. Nevertheless, unit-information priors are appealing for
present purposes due to their connection to the Schwarz criterion. The unit-scale Cauchy prior, a default
prior proposed by Jeffreys (1961), may be regarded as a non-Gaussian unit-information prior, and so will
be covered in the framework developed below. Other related literature include Spiegelhalter and Smith’s
(1982) discussion of Bayes factors derived from improper priors, whose ideas are adapted in Spitzner
(2014) to neutral-data comparisons for variable selection. Additional discussion of the Schwarz criterion,
especially of its use in practice, is found in Raftery (1995) and Weakliem (1999); recent developments
appear in Bollen et al. (2012). See also Lu (2012), in which unit-information priors are used in an interesting
way to rethink intrinsic Bayes factors. The use of imaginary data is often credited to Good (1950), who calls
it the “device of imaginary results.”

In what follows, Section 2 presents the article’s main formulas, including a broad criterion for selecting
neutral data that is suitable for testing problems that involve regular likelihood functions. Section 3 follows
with illustrations of the proposed data-analysis methodology to the classical Behrens-Fisher problem and
to the analysis of count data in a two-way table. Concluding discussion appears in Section 4.

2 Main results
The article’s approach to handling nuisance parameters aligns more closely to the applied framework of
Bayes factors rather than that of the Schwartz criterion. In particular, nuisance parameters are not to
be replaced by “plug-in” estimates, as is sometimes done in applications of the Schwarz criterion, but are
regarded as quantities to be conditioned upon during analysis formulation, and integrated across when cal-
culating analysis results. Thus, the starting point in developing the proposed methodology are conditional
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versions of the Bayes factor and neutral-data comparison,

BF01(Y |φ) =
π0(Y |φ)

π1(Y |φ)
and NDC01(Y |φ) =

BF01(Y |φ)

BF01(Ỹ |φ)
, (5)

in which φ is a nuisance parameter and πi(Y |φ) is a marginal density for the data under model Mi,
conditional on φ. In this formulation, neutral data are also specified conditionally on the nuisance pa-
rameter, Ỹ = Ỹ (φ), but that dependency is omitted in the notation. Denote by θ the parameter under
test in assessing M0 vs M1, for which the “null” setting θ = θ0 is associated with the model M0. The
log-likelihood function is l(θ,φ;Y ), hence the marginal data-densities are π0(Y |φ) = l(θ0,φ;Y ) and
π1(Y |φ) =

∫
l(θ,φ;Y )π(θ|φ)dθ.

The problem is assumed to be suitably regular in the sense that Laplace’s method provides an approx-
imation to the conditional Bayes factor given by

BF01(Y |φ) ≈ |În(θ̂|φ)|1/2

(2π)ν/2π(θ̂|φ)
e−

1
2
‖Z(φ)‖2 , (6)

as n→∞, where n is “sample size,” ν is the dimension of θ,

‖Z(φ)‖2 = 2l(θ̂,φ;Y )− 2l(θ0,φ;Y ),

θ̂ solves ∇l(θ̂,φ;Y ) = 0, and În(θ|φ) = −∇2l(θ,φ;Y ), writing ∇ and ∇2 to denote the gradient and
Hessian operators with respect to θ. For example, the Laplace approximation (6) holds when l(θ,φ;Y ) +
log π(θ|φ) is concave in θ, at least locally near its maximum value; see Tierney and Kadane (1986) for
alternative conditions. An additional assumption is that, conditionally given φ, data generated under model
M1 will induce

În(θ̂|φ) ≈ In(θ|φ) and π(θ̂|φ)→ π(θ|φ) > 0, (7)

as n→∞, for a matrix-function In(θ|φ), which is an asymptotic conditional Fisher information matrix. The
same asymptotic properties are assumed for data generated underM0, except θ = θ0.

2.1 Specifying neutral data
Suppose it is possible to sensibly formulate a full-rank analogue I0(θ|φ) to In(θ|φ) that is to represent
the case where n is set to its minimum value. For example, this quantity may be the units in the rate of
growth, I0(θ|φ) ≈ n−1In(θ|φ), or it might be devised by substituting into In(θ|φ) the minimal sample-size
information thought necessary to begin to understand the phenomenon under study. For insight into this
idea, consider that when Y = (Y 1, . . . ,Y n) is an independent and identically distributed sample, Fisher
information is In(θ|φ) = nI0(θ|φ), which identifies the quantity I0(θ|φ) explicitly. The simple Gaussian
case discussed in Section 1 has this set up, and yields In(θ) = n and I0(θ) = 1. Nevertheless, in multi-
sample and other scenarios the notion of “sample size” is complex and the formulation of I0(θ|φ) requires
special care. This is a familiar complication that also arises in applications of the Schwarz criterion, and is
discussed further in Section 4.

Assuming it is possible to formulate a suitable I0(θ|φ), a scaled unit-information prior takes the form

π(θ|φ) = (2πτ2)−ν/2|I0(θ0,φ)|1/2h(θ|φ), (8)

where τ2 > 0 is the scale parameter, and

h(θ|φ) = f

(
1

2τ2
(θ − θ0)T I0(θ0,φ)(θ − θ0)

)
, (9)

for some function f . Within this family, the unit-information prior is defined at the setting τ2 = 1, at which
the “amount of information in the prior on [the parameter] is equal to the amount of information about [the
parameter] contained in one observation,” by Kass and Wasserman’s (1995, p. 929) characterization.

A prior of the form (8) is assumed throughout this article. Although this puts a definite restriction on the
scope of proposed method’s applicability, it is nevertheless the case that the scaled unit-information priors
are suitable in a wide range of data-analysis scenarios. To use these priors, the analyst must typically
attend carefully to identifying a parameter-transformation such that the prior remains meaningful even
when τ2 is large. The function f is often chosen to reflect a Gaussian or Cauchy prior, the latter touching
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on the recommendation of Jeffreys (1961), or may be determined by integrating over the hyper-prior in a
hierarchical formulation. Possible extension of present ideas to other priors is discussed in Section 4.

The proposed calibration rule in this scenario is to specify Ỹ so that the neutral-data version of the
conditional Bayes factor becomes

BF01(Ỹ |φ) = τν , (10)

the same rule applied to the simple Gaussian case of Section 1, except here it is formulated conditionally,
given φ, for a ν-dimensional parameter. As before, the setting τ2 = 1 reflects the desired property that
neutral data are to yield neutral evidence under a unit-information prior. The precise form τν reflects the
typical scaling properties of a Bayes factors, for whenever a prior density is from a scale family, π(θ) =
τ−νπ∗(θ/τ), the Bayes factor has BF01 ≈ τνBF ∗01 as τ →∞, where BF ∗01 is defined at τ2 = 1.

2.2 Approximations and connections
Application of the Laplace approximation (6), together with (1) and (10), provides an approximation to the
neutral-data comparison given by

NDC01(Y |φ) ≈ |În(θ̂,φ)|1/2

|I0(θ0,φ)|1/2
e−

1
2
‖Z(φ)‖2

h(θ̂|φ)
. (11)

Kass and Wasserman (1995) derive a similar approximation to the Bayes factor, under the setting τ2 = 1,
and explore its asymptotic properties when θ̂ = θ0 + O(n−1/2). Applying the same assumption within
(11) implies h(θ̂|φ) ≈ f(0), and, by (7), the subsequent approximation NDC01(Y |φ) ≈ expS01(Y |φ) as
n→∞, having defined the modified Schwarz criterion

S01(Y |φ) = −1

2
‖Z(φ)‖2 + log

|În(θ̂,φ)|1/2

|I0(θ0,φ)|1/2
− log f(0). (12)

In the case where φ is absent and In(θ) = nI0(θ), the formula (12) exactly matches Kass and Wasser-
man’s (1995) modified Schwarz criterion, in which f(0) adjusts for a non-Gaussian prior.

In the development of neutral-data comparisons, asymptotic behavior as τ2 → ∞ is a more central
concern than asymptotic behavior as n→∞. By this perspective, it is interesting to observe that h(θ|φ)→
f(0) as τ2 →∞, hence (11) shows that, when n is large and τ2 is very large, the neutral-data comparison
NDC01(Y |φ) is very nearly the exponentiated Schwarz criterion in (12).

Under present assumptions, the approximation NDC01(Y |φ) ≈ expS01(Y |φ) as n → ∞ is accurate
underM0, but not underM1, although, from a practical point of view, the inaccuracy is small relative to any
moderate level of support provided by NDC01(Y |φ) forM1. This is illustrated in Section 3.1, below. The
same pattern of inaccuracy arises when approximating the conditional Bayes factor at τ2 = 1 according
to BF01(Y |φ) ≈ expS01(Y |φ) as n → ∞, which is the basis of criticisms made in Berger and Pericchi
(1996) and Moreno et al., (1999) of the Schwarz criterion. The exact neutral-data comparison (1) is a valid
Bayesian procedure on its own, which need not be interpreted as an approximate Bayes factor, and so
avoids a parallel criticism. The limiting neutral-data comparison, as τ2 →∞, is

NDC01(Y |φ) →
{

(2π)−ν/2|I0(θ0,φ)|1/2f(0)

∫
el(θ,φ;Y )−l(θ0,φ;Y )dθ

}−1

, (13)

provided the integral exists. It would be consistent with the above arguments to regard the limit in (13)
as the neutral-data comparison under a completely non-informative and possibly improper prior, or as a
“small sample” version of the exponentiated Schwarz criterion. Either way, the limit in (13), too, avoids any
criticism of inaccuracy as n→∞, hence resolves the shortcomings of expS01(Y |φ).

3 Demonstrations on example data
In this section, the proposed methodology derived from the rule (10) is demonstrated in two example
data-analyses. Prior to that discussion, it is helpful to comment on computations, and on neutral-data
comparisons’ connection to the prior and posterior model probabilities.
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In the example analyses, the unconditional version of a Bayes factor or neutral-data comparison is
calculated by the following steps. First, the conditional version (5) is converted into conditional posterior
model probabilities, and then to unconditional posterior model probabilities using the formula

P [M0|Y ] =

{
1 +

∫
P [M1|Y ,φ]π0(φ|Y )dφ∫
P [M0|Y ,φ]π1(φ|Y )dφ

}−1

, (14)

having written π0(φ|Y ) and π1(φ|Y ) for the model-specific posterior densities of the nuisance parameter.
The final step is to convert the unconditional posterior model probabilities to the desired unconditional
assessment.

In order to carry out these steps, it is necessary to specify prior model probabilities, which are not
required for calculating a Bayes factor or neutral-data comparison, but they are required for calculating a
posterior model probability. An important relationship is

ρ01(φ) = ρ̃01(φ)/BF01(Ỹ |φ), (15)

where ρ01(φ) = P [M0|φ]/P [M1|φ] and ρ̃01(φ) = P [M0|Ỹ ,φ]/P [M1|Ỹ ,φ]. In the example analyses,
the reported Bayes factors are calculated under the setting ρ01(φ) = 1; the reported neutral-data compar-
isons are calculated under the setting ρ̃01(φ) = 1, which calibrates ρ01(φ) through formula (15). Refer to
Spitzner (2011) for an interpretation of these settings. As it turns out, the analyst need not actually solve
ρ01(φ) from ρ̃01(φ), but can instead work with the relationships,

P [M0|Y ,φ]/P [M1|Y ,φ] = ρ01(φ)BF01(Y |φ) = ρ̃01(φ)NDC01(Y |φ). (16)

The rightmost formula in (16) is especially convenient when working with extremely vague priors, since, in
that case, ρ01(φ) is near zero when ρ̃01(φ) is of moderate size, making the middle formula difficult to use.

Integration in (14) is carried out numerically by averaging over model-specific MCMC-generated sam-
ples. In every set of data-analysis results presented below, the number of iterations is at least one million,
yielding a very high level of simulation accuracy.

3.1 The Behrens-Fisher problem
The first example demonstrates the proposed methodology in the context of the Behrens-Fisher problem,
using the “yarn strength” data from Box and Tiao (1992, ex. 2.5.4). The Behrens-Fisher problem is a
simple, classic setup that has been studied by many authors, frequentist and Bayesian; it is curious for the
complications to classical methodology that its nuisance parameters introduce. The problem involves two
data vectors, Y 1 and Y 2, which represent measurements drawn from independent samples of respective
size n1 and n2. Box and Tiao’s data describe measurements of yarn breaking-strength from samples of size
n1 = 20 and n2 = 12, with respective sample means Ȳ1 = 50 and Ȳ2 = 55, and sample variances s21 = 12
and s22 = 40. The modelM0 puts Y i|µ, σ2

i ∼ G(µ1, σ2
i Ini) andM1, puts Y i|µi, σ2

i ∼ G(µi1, σ
2
i Ini).

Although formula (8) defines a scaled unit-information prior from Fisher information, it is possible in this
problem to identify such a prior from more direct arguments. Observe that, underM1,

n1Ȳ1/σ
2
1 + n2Ȳ2/σ

2
2

n1/σ2
1 + n2/σ2

2

∣∣∣∣σ2
1 , σ

2
2 ∼ G

(
n1µ1/σ

2
1 + n2µ2/σ

2
2

n1/σ2
1 + n2/σ2

2

,
1

n1/σ2
1 + n2/σ2

2

)
(17)

and, independently,

Ȳ1 − Ȳ2

σ2
1/n1 + σ2

2/n2

∣∣∣∣σ2
1 , σ

2
2 ∼ G

(
µ1 − µ2

σ2
1/n1 + σ2

2/n2
,

1

σ2
1/n1 + σ2

2/n2

)
. (18)

In light of these formulas, Kass and Wasserman’s (1995) characterization of unit-information is easily
adapted to reflect equality of variance in the prior to the variance associated with one observation from
each sample. Applying this idea to (17) and (18) motivates the transformation

µ =
µ1/σ

2
1 + µ2/σ

2
2

1/σ2
1 + 1/σ2

2

and θ =
µ1 − µ2

σ2
1 + σ2

2

, (19)

and identifies the corresponding conditional scaled unit-information priors

µ|σ2
1 , σ

2
2 ∼ G

(
0,

τ2

1/σ2
1 + 1/σ2

2

)
and θ|σ2

1 , σ
2
2 ∼ G

(
0,

τ2

σ2
1 + σ2

2

)
,
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Figure 1: Evidence assessments on Box and Tiao’s yarn-strength data for τ between 1 and 100, plotted on
a standard scale of evidence. The two (almost entirely overlapping) solid lines mark the default neutral-data
comparisons and an approximation; the solid line with circles mark the Bayes factor; and the dashed line
mark neutral-data comparisons calibrated to τ/3.

where τ is the scale parameter. The prior on the variance parameters is taken to specify independent
scaled inverse-chi-square distributions, λ/σ2

1 ∼ χ2
κ and λ/σ2

2 ∼ χ2
κ.

Under the transformation (19), the modelM1 is re-parameterized to Y 1|θ,φ ∼ G((µ + σ2
1θ)1, σ

2
1In1)

and Y 2|θ,φ ∼ G((µ−σ2
2θ)1, σ

2
2In2), having set φ = (µ, σ2

1 , σ
2
2). The modelM0 is identified by the setting

θ = θ0 = 0. The relevant conditional Bayes factor is

BF01(Y |φ) =

(
1 + τ2

n1σ
2
1 + n2σ

2
2

σ2
1 + σ2

2

)1/2

exp

{
−1

2
w(σ2

1 , σ
2
2)Z(φ)2

}
, (20)

where

Z(φ)2 =
{n1(Ȳ1 − µ) + n2(Ȳ2 − µ)}2

n1σ2
1 + n2σ2

2

and w(σ2
1 , σ

2
2) =

τ2(n1σ
2
1 + n2σ

2
2)/(σ2

1 + σ2
2)

1 + τ2(n1σ2
1 + n2σ2

2)/(σ2
1 + σ2

2)
,

and the corresponding neutral-data comparison is

NDC01(Y |φ) =

(
1

τ2
+
n1σ

2
1 + n2σ

2
2

σ2
1 + σ2

2

)1/2

exp

{
−1

2
w(σ2

1 , σ
2
2)Z(φ)2

}
. (21)

Though not specifically needed, it is straightforward to solve (10) in order to deduce an explicit setting of
neutral data, whose analogue to Z(φ)2 is

Z̃(φ)2 =
1

w(σ2
1 , σ

2
2)

log

(
1

τ2
+
n1σ

2
1 + n2σ

2
2

σ2
1 + σ2

2

)
.

Figure 1 displays unconditional assessments calculated from the neutral-data comparison (21), in sev-
eral configurations, together with results obtained by the Bayes factor and other established procedures,
including several calculated by Moreno et al. (1999) on the same data. Twenty values of the scale param-
eter are examined, across the range 1 ≤ τ ≤ 100, which indexes the horizontal axis of Figure 1. The prior
variance parameters are set to κ = λ = 0, a standard non-informative setting, in every evaluation. The
precise quantities that are plotted in Figure 1 are manifestations of the formula 2 log(P [M1|Y ]/P [M0|Y ]),
by which larger magnitudes indicate stronger evidence forM0 (if negative) orM1 (if positive); the strength
of evidence is categorized into “positive,” “strong,” and “very strong” above the thresholds 3, 6, and 10,
according to the scale proposed in Kass and Raftery (1995).

The results plotted in Figure 1 include those calculated from the approximation (11), which in the present
problem evaluates to

NDC01(Y |φ) ≈
(
n1σ

2
1 + n2σ

2
2

σ2
1 + σ2

2

)1/2

exp

{
−1

2
Z(φ)2 +

1

2

(
σ2
1 + σ2

2

τ2

)
θ̂2
}
, (22)

where θ̂ = {n1(Ȳ1 − µ)− n2(Ȳ2 − µ)}/(n1σ
2
1 + n2σ

2
2). Results from both (21) and (22) are plotted as solid

lines in Figure 1. The graphs associated with these two statistics almost entirely overlap, indicating that
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Figure 2: Evidence assessments on Raftery’s “Smoking,” “Teeth,” and “Lizard Perch” tables for τ between
0.1 and 10, plotted on a standard scale of evidence. The solid line marks the default neutral-data com-
parisons; the solid line with circles mark the Bayes factor. The asterisks labelled “R1,” “R2,” “R3,” mark
the assessments obtained under Raftery’s prior at respective values 1, 1.65, and 5 of that prior’s scale
parameter.

the inaccuracy of (22) to (21) is very small on these data; the graph associated with (22) is very slightly
smaller. The solid line overlaid with circles in Figure 1 is calculated from the Bayes factor (20). As expected
from its scaling properties, the evidence forM1 exhibited by the Bayes factor grows drastically weaker as τ
increases beyond a certain value, while that exhibited by the neutral-data comparisons eventually stabilize.

Several assessments alluded to in previous discussion, but not addressed in detail, are also plotted
in Figure 1. Results from two versions of the Schwarz criterion are marked by asterisks and labeled
“BIC1” and “BIC2,” each of which is calculated using a different ad hoc technique for handling the nuisance
parameters and definition of “sample size.” The value BIC1 is calculated in Moreno et al. (1999), and BIC2
is calculated using “MLE substitution,” according to the formula

Ŝ01(Y ) =
1

2
Z(φ̂)2 − 1

2
log

(
n1σ̂

2
1 + n2σ̂

2
2

σ̂2
1 + σ̂2

2

)
,

where φ̂ = (µ̂, σ̂2
1 , σ̂

2
2) is the maximum-likelihood value of φ under M1. Refer to Bollen et al. (2012) for

general discussion of such techniques. It is interesting that the results derived from neutral-data compari-
son tend to stabilize near those of the ad hoc Schwarz criteria; however, that pattern appears to be due, at
least in part, to coincidence, as the pattern is quite different in the results of the second example analysis
of Section 3.2, below.

Moreno et al. (1999) also calculate an intrinsic Bayes factor, whose result is marked in Figure 1 by an
asterisk and labeled “Intr.” As an experiment with using a family other than unit-information priors to define
neutral data, a set of results is calculated from a modified calibration rule (10), by which τν is revised to
τν/γ, where γ is selected so that the limiting neutral-data comparison approximately matches the intrinsic
Bayes factor. The value identified here, by simple trial and error, is γ = 3; results corresponding to that
setting are plotted as a dashed line in Figure 1. It is interesting that the theory of intrinsic priors suggests
a different value, γ = 2, in the simple Gaussian case discussed in Section 1. The setting γ = 3 identified
here likely reflects Moreno et al.’s (1999) specific handling of nuisance parameters in their construction of
the intrinsic prior.

Such fiddling with the calibration rule (i.e., introducing the constant γ) suggests intriguing possibilities
for making an entirely subjective choice of neutral data. For instance, consider an exercise carried out
in Moreno et al. (1999, sec. 3) in which the results of a number of Bayesian testing procedures are
compared across an array of hypothetical data values; the authors conclude that the intrinsic Bayes factor
shows “sensible discriminatory behavior” and is to be preferred. It is proposed that γ = 1, the value
used throughout this article, be treated as a “default,” and that an alternative, valid setting for γ might be
determined by refining Moreno et al.’s exercise, based on the analyst’s opinion of sensible behavior.
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3.2 Log-linear models for the analysis of two-way tables
The second example demonstrates the proposed methodology in the analysis of two-way tables. The
data are taken from Raftery (1993, sec 9.3) and consist of three 2 × 2 tables generated from separate
experiments. Write Y = {Y11, Y12, Y21, Y22} to denote the data of an individual table, where Yjk is the cell
count of the j’th row and k’th column. The raw data are Y = {32, 11, 60, 30} for the “Smoking” experiment,
Y = {4, 16, 1, 21} for the “Teeth” experiment, and Y = {32, 11, 86, 35} for the “Lizard Perch” experiment.
See Raftery (1993) for sources and additional description.

The Yjk are taken to be Poisson counts that are independent across the table cells. The modelsM0 and
M1 are distinguished by the absence, inM0, or presence, inM1, of row-column interaction among the log-
transformed Poisson means, ηjk = logE[Yjk]. The nuisance parameter, φ = (φ1, φ2, φ3), collects the “free
parameters,” φ1 = (η11+η12+η21+η22)/2, φ2 = (η11−η12+η21−η22)/2, and φ3 = (η11+η12−η21−η22)/2,
which are orthonormal transformations of the ηjk. The parameter θ = (η11 − η12 − η21 + η22)/2 identifies
the magnitude of interaction, and is fixed at θ = θ0 = 0 in modelM0. The log-likelihood function is

l(θ,φ;Y ) =
∑
j,k

Yjkηjk − n(θ,φ),

where n(θ,φ) =
∑
j,k e

ηjk gives the expected total count of table cells, in which the ηjk are understood as
functions of θ and φ by inverting the relationships identified above.

A suitable asymptotic framework treats n(θ0,φ) as “sample size,” and considers asymptotic behavior as
that quantity becomes arbitrarily large. It is furthermore assumed that each E[Yjk] = eηjk is asymptotically
similar to n(θ0,φ), i.e., each ratio is bounded above and bounded below above zero. This represents a
“fixed marginal” scenario in which new measurements arrive independently to the table and fall into cells
in proportions determined by the experimental phenomenon. The fixed marginal scenario is mechanically
distinct from the “random marginal” scenario defined by Poisson counts, but it is easy to check that the
respective likelihood functions are proportional, and so the scenarios are equivalent for purposes of infer-
ence. The dependence of sample size, n = n(θ0,φ), on a nuisance parameter is unconventional, but it
nevertheless yields a Laplace approximation to the conditional Bayes factor (6), and is otherwise consistent
with the framework of Section 2. The assumption of asymptotic similarity is necessary to be sure that the
conditional maximum-likelihood value θ̂ → θ0 = 0, as n(θ0,φ)→∞, for data generated underM0.

It is straightforward to deduce that În(θ̂|φ) ≈ In(θ0|φ) = n(θ0,φ)/4. The rate at which this quantity
grows, relative to sample size, is I0(θ0|φ) = 1/4, which is taken to define unit-information. The scaled
unit-information prior applied here specifies θ ∼ G(0, 4τ2), independently of φ. Similarly, the prior on φ
has independent φi ∼ G(0, 4τ2). This is equivalent to specifying independent ηjk ∼ G(0, 4τ2) under model
M1, and a constrained version of the same prior under modelM0.

Analysis results on Raftery’s count data, calculated at several settings of τ2, are plotted in Figure 2.
As in the example analysis of Section 3.1, the scale parameter is examined across of range of twenty
values, 0.1 ≤ τ ≤ 10, which form the horizontal axis of each panel; as before, the quantities plotted are
2 log(P [M1|Y ]/P [M0|Y ]), calculated from either a Bayes factor or neutral-data comparison, which indi-
cate the strength of evidence for the modelM1. Computations again rely on MCMC simulation, together
with formula (14). In each panel of Figure 2, one sees the same pattern observed in the previous illustra-
tion, in which the Bayes factor exhibits increasingly stronger evidence forM0 at larger values of τ , while
the neutral-data comparison stabilizes.

For reference, results associated with the Bayes factors calculated in Raftery (1993) are marked in each
panel of Figure 2 by asterisks and labeled “R1,” “R2,” and “R3,” which correspond to three values of a scale
parameter for the class of priors used in those analyses. It is unsurprising that these plotted values are
typically smaller than the values produced by neutral-data comparisons at large τ , since they presumably
respond to scale in much the same way as the Bayes factors calculated here. A value derived from an ad
hoc version of the Schwarz criterion also appears in each panel, marked by an asterisk and labeled “BIC.”
The calculation is made by the formula Ŝ01(Y ) = l(θ̂, φ̂n;Y )− l(θ0, φ̂n;Y )− 1

2
logN , where N =

∑
jk Yjk

and θ̂ and φ̂n are maximum-likelihood values. It is interesting that the relative pattern in BIC is inconsistent
across these examples: on the “Lizard Perch” data, the result based on BIC falls near those of the limiting
neutral-data comparisons for large τ2; in the other examples, the strength of evidence indicated by BIC for
M1, relative to neutral-data comparisons, is substantially weaker.
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4 Conclusions
A simple, intuitively reasonable calibration rule has been presented and explored for carrying out data
analysis based on neutral-data comparisons. An implication of this rule is that it places a neutral-data
comparison on a spectrum falling between a Bayes factor, formulated in a default configuration, and the
exponentiated Schwarz criterion, highlighting that a neutral-data comparison is robust to modifications of
the prior, but it is still sensitive to subjective knowledge. Exploration of the proposed methodology on
existing data illustrates that neutral-data comparisons lead to reasonable conclusions, and produce values
that are within the range of comparable assessments that have been calculated by other authors.

The concept of neutral data is a recent contribution to statistical theory, and is still under development
as a tool for applied analysis. The present article offers a concrete guideline for specifying neutral data that
is suitable for use with a widely applicable class of priors, the scaled unit-information priors. Extensions
are certainly possible. For example, consider if Y = (Y 1, . . . ,Y n) is such that Y i ∼ G(0,Σ) under
M0 and Y i|θ ∼ G(θ,Σ) with θ ∼ G(0, τ2∆) under M1, independently across i. The Bayes factor is
BF01(Y ) = |I + τ2nΣ−1/2∆Σ−1/2|1/2 exp{− 1

2
ZTWZ}, where Z = n−1/2∑

i Σ
−1/2Y i and W = {I +

Σ1/2∆−1Σ1/2/(τ2n)}−1. The scaling properties of the Bayes factor in this example suggests the modified
calibration rule BF01(Ỹ ) = τν |Σ−1/2∆Σ−1/2|, to replace (10). Such ideas are explored in Spitzner
(2014), using ideas from Spiegelhalter and Smith (1982). A future investigation will develop concepts
for understanding neutral data without recourse to asymptotic analysis, either as n→∞ or as τ2 →∞.

The proposed methodology makes heavy use of conditioning in order to deal with nuisance parameters.
The example analysis of log-linear models in Section 3.2 highlights a particularly useful aspect of this
approach, which is that it expands the concept of sample size to allow formulations that depend on nuisance
parameters, as does the formulation of n(θ0,φ). The possibilities for meeting the requirements of intuition
are widened by the added flexibility of parameter-specific formulations

A Motivation for neutral-data comparisons
Suppose the analyst is in the process of formulating a prior, and his or her attention is focused on the prior
probabilities assigned to M0 and M1. As a check, he or she imagines a set of neutral data, Ỹ , which,
matching the definition stated in Section 1, the analyst has come to think exhibits evidence no more in
support ofM0 thanM1. On substituting Ỹ into the posterior formula, he or she might expect to observe
P [M0] = P [M0|Ỹ ], supposing that neutral data would fail to sway knowledge toward either model. How-
ever, the scale properties of Bayes factors imply that if P [M0] = 1/2, say, and the prior dispersion onM1 is
much larger than that onM0 (and the imagined Ỹ is not strongly tied to dispersion), then P [M0|Ỹ ] will be
very nearly one. The analyst will, therefore, unexpectedly observe P [M0] 6= P [M0|Ỹ ]. The effect of this
observation is to create ambiguity over the choice of a baseline in weighing evidence. The Bayes factor,
when written as a ratio of posterior to prior odds, BF01(Y ) = {P [M0|Y ]/(1− P [M0|Y ])}/{P [M0]/(1−
P [M0])}, is seen to use P [M0] as its baseline. A neutral-data comparison makes the other choice,
P [M0|Ỹ ], and weighs evidence as a ratio of posterior odds on observed data to that on neutral data,
NDC01(Y ) = {P [M0|Y ]/(1 − P [M0|Y ])}/{P [M0|Ỹ ]/(1 − P [M0|Ỹ ])}. It is straightforward to check
that formula (1) is identical to this ratio.
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