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Abstract

A multiplicity adjustment is proposed for variable selection problems that is specified through prior
model probabilities in a model-choice context. This is distinct from many traditional approaches to multiple
testing, whose focus is the choice of loss function, rather than the choice of prior. The proposed multiplicity
adjustment is described through a simple rule that is expressed within a recently developed framework
for calibrating Bayes factors, known as neutral-data comparisons. Theoretical analysis suggests that the
approach is effective in high-dimensional, sparse-signal contexts. It is illustrated on a data set of adverse-
event frequencies in a vaccine trial, and compared with an existing, related approach, where it is shown to
provide a beneficial clarifying effect.

KEY WORDS: Variable selection; Bayes factors; neutral-data comparisons; multiple testing; adverse-event
data.

ABBREVIATED TITLE: Adjusting for multiplicities in variable selection.

1 Introduction
In testing problems, the “multiplicity” concept (a.k.a., “multiple testing” or “multiple comparisons”) extends
the goal of choosing between two models, M0 vs M1, say, to that of choosing from among a class of
multiple models, Ms for s ∈ S. It emphasizes the difficult challenge of making sensible inferences when
there are many, possibly very many, models to consider. In recent years, the development of multiplicity-
adjustment techniques has become, and remains, one of the most active areas of statistical research.
Berry and Hochberg (1999) express its importance in stating, “Multiplicities are present in virtually every
application of statistics. Multiple comparisons. . . are among the most difficult of problems faced by statisti-
cians and other researchers.”

Multiplicity is often treated using decision theory in various ways, focusing primarily on the choice of
loss function; see, e.g., Duncan (1965), Berry and Hochberg (1999), Scott and Berger (2006), Müller,
Parmigiani, and Rice (2007), and Polson and Scott (2011). This article focuses instead on the choice of
prior model probabilities. The essence of the approach is to formulate each prior probability of a “signal”
conditionally on the number of existing signals, assigning a low or high value according to whether there a
low or high number of existing signals. The exact probability value to be assigned depends on the multiple-
testing problem under consideration. This article develops a rule for variable selection with independent
components, in which the likelihood function factors into component-specific likelihood functions. Theo-
retical evaluation suggests that the resulting procedure is remarkably effective. For example, it is able to
detect sparse signals in ultra-high dimensions, according to stringent asymptotic criteria described in Fan
and Lv (2008).

Dan Spitzner is Associate Professor, Department of Statistics, University of Virginia, P. O. Box 400135, Char-
lottesville, VA 22904-4135, USA. The author is grateful for invaluable support in preparing this technical report from the
National Science Foundation (grant number SES-1260803).
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An example variable selection problem, an adverse-event analysis of data from a clinical trial, motivates
and guides the development of the proposed methodology. The data appear in Berry and Berry (2004),
whose analysis is especially relevant for demonstrating an existing methodology that treats multiplicity
through the assignment of prior model probabilities. That analysis applies a hierarchical formulation of prior
model probabilities, and is found to produce a very strong shrinkage effect, while the proposed approach
shrinks more modestly and better clarifies the evidence for adverse events (and nonevents) in the data.

As a means to make sense of the proposed approach, its ideas are organized within the framework of
“neutral-data comparisons,” a recent technique for calibrating Bayes factors introduced in Spitzner (2011).
Neutral-data comparisons situate among Bayesian testing procedures that have been developed for use
under vague prior information. Notable examples are the criterion of Schwarz (1978), the calibrated im-
proper Bayes factors of Spiegelhalter and Smith (1982), the fractional Bayes factors of O’Hagan (1995),
the unit-information priors of Kass and Wasserman (1995), and the intrinsic Bayes factors of Berger and
Pericchi (1996). See also Bayarri et al. (2012) and references therein. In what follows, ideas discussed
in Spiegelhalter and Smith (1982) are especially relevant for guiding the formulation of “imaginary data,”
which anchors the calibration underlying the neutral-data comparisons technique.

The article is organized as follows. Section 2 describes the variable selection problem and proposed
methodology. Section 3 demonstrates the methodology on Berry and Berry’s adverse-events data set, and
compares results. Concluding discussion appears in Section 4, and all technical derivations appear in the
appendix.

2 Variable selection by neutral-data comparisons
In the variable selection problem treated here, the data consist of p independent sets of sample measure-
ments, Y 1, . . . ,Y p such that the i’th set is Y i = (Y i1, . . . ,Y ini) for independent Y ij . A model Ms is
defined from a subset As ⊂ {1, . . . , p}, according to which the parameter “of interest” is θs = (θi : i /∈ As),
the “nuisance” parameter is φ = (φi : i = 1, . . . , p), and the likelihood function is

Ls(θs,φ;Y ) =
∏
i∈As

L(θ0i ,φi;Y i)×
∏
i/∈As

L(θi,φi;Y i) (1)

in which the components of θ0s = (θ0i : i ∈ As) are fixed “null” values of the parameter. In other words,
the model Ms reflects the hypothesis of “no signal,” θi = θ0i , in components i ∈ As. In some contexts
(such as the Gaussian case described below), the nuisance parameters φi are not distinct across i, but
are identified with a common parameter.

The prior is understood through the specification

θi|φi, τ ∼ G(θ0i , τ
2
i ∆i(φi, τ )), (2)

where ∆i(φi, τ ) is a positive-definite covariance matrix, and τ is a hierarchical parameter that includes
the scale parameter, τ2i . Though (2) is specifically Gaussian, its dependence on τ admits treatment of
possibly complex hierarchical formulations that extend beyond the Gaussian family.

Several specific cases of variable selection problems will be examined in detail to develop the proposed
methodology and understand its properties.

• Case 1: In the Gaussian case, each Y ij |Ms,Σ ∼ G(0,Σ) if i ∈ As and Y ij |Ms,θi,Σ ∼ G(θi,Σ)
if i /∈ As, where φi = Σ is a positive definite covariance matrix. The prior is specified as θi|τ2 ∼
G(0, τ2∆). Each Y i is assumed to have the same sample size, ni = n, and each θi to have the
same dimension, ν.

• Case 2: The component likelihoods are instead defined from an exponential family, or some other
parametric family that is suitable regular. For instance, the case of binary outcomes is the basis
of many disease-incidence models, such as those found in spatial epidemiology, in which the sum
Ti =

∑
j Yij has Ti|Ms ∼ binomial(ni, θ0i ) if i ∈ As and Ti|Ms ∼ binomial(ni, θi) if i /∈ As. In gen-

eral, justification of the concepts discussed below will follow from the existence of maximum-likelihood
values, θ̂i, calculated at fixed φi, that satisfy and asymptotic conditional Gaussian approximation,
θ̂i|φi∼̇G(θi, n

−1
i I(θi,φi)

−1), as ni → ∞, where niI(θi,φi) is the component-specific Fisher infor-
mation matrix. See, e.g., Shao (2003) for conditions under which this property is satisfied.

The article’s objective is to develop ideas sufficiently well to apply them in a reanalysis of Berry and Berry’s
(2004) adverse-event data set. That context is described as follows, using slightly revised subscripting.
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• Case 3: The data are an array of incidence-count totals from a vaccine trial that involved control
and treatment groups of n1 = 132 and n2 = 148 subjects. The counts are of forty pre-defined
“adverse event” (AE) occurrences (e.g., a rash or nausea), which are uniquely grouped into eight body
systems. Corresponding notation identifies pairs of triple-subscripted data, Y jk = (Y1jk, Y2jk), where
k indexes AE-type k ∈ Kj within body system j ∈ J , and the order of pairing reflects “control” versus
“treatment” conditions. The data-analysis objective is to “flag” any AE-types whose occurrence-rates
are greater under the vaccine treatment. Each Yijk ∼ binomial (ni, pijk), independently across
i = 1, 2 and (j, k) ∈ Ω = {(j, k) : j ∈ J, k ∈ Kj}. Each modelMs is characterized by three subsets:
As,0, which collects index-pairs (j, k) such that p1jk = p2jk; As,1, which collects the (j, k) such that
p1jk > p2jk; and, As,2, which collects the (j, k) such that p1jk < p2jk. Define φjk = 1

2
(η1jk+η2jk) and

θjk = 1
2
(η1jk − η2jk), having set ηijk = log{pijk/(1 − pijk)}, and collect them into the parameters

φ = (φjk : (j, k) ∈ Ω) and θs = (θjk : (j, k) /∈ As,0), which respectively record ν0 and νs,1 “free”
parameters of modelMs. The likelihood function factors into components, as in (1) but indexed by
(j, k), such that θ0jk = 0 replaces θjk for components with (j, k) ∈ As,0. Each component is from an
exponential family,

L(θjk, φjk;Y jk) = Cζ(Y jk) exp {(Y1jk − Y2jk)θjk + (Y1jk + Y2jk)φjk − ζ(θjk, φjk)} ,

where Cζ(Y jk) =
(
n1
Y1jk

)(
n2
Y2jk

)
and

ζ(θjk, φjk) = n1 log
(

1 + eφjk+θjk
)

+ n2 log
(

1 + eφjk−θjk
)
.

The prior for this case is understood through a hierarchical formulation that makes use of the arrange-
ment of AE-types within body systems; its detailed description appears in Section S:AEs.

2.1 Bayes factors and neutral-data comparisons
Conditional on φ and τ , it is assumed the prior onMs specifies mutual independence among the compo-
nents of θs. It follows that the conditional Bayes factor for choosing between two modelsMs vsMt factors
according to

BFst(Y |φ, τ ) =
∏

i∈As∩Ac
t

BFi(Y i|φ, τ )×
∏

i∈Ac
s∩At

1

BFi(Y i|φ, τ )
, (3)

where

BFi(Y i|φ, τ ) =
L(θ0i ,φi;Y i)∫

L(θi,φi;Y i)π(θi|φi, τ )dθi
(4)

is the conditional Bayes factor associated with the hypothesis that component i has “no signal.”
The proposed variable selection scheme is formulated by calibrating the BFst(Y |φ, τ ) in a manner that

reflects the complexity ofMs andMt. It is sufficient to only work directly with elementary tests defined by
Ms vsMt such that As = At ∪ {i}, for some i, since the formula (3) induces a relationship among Bayes
factors that will extend any calibration made in these tests to the Bayes factor of any two models. Assuming
an elementary test, the proposed calibration acts to shrink the Bayes factor if |As| is small and magnify the
Bayes factor if |As| is large. The specific calibration is not formulated in an ad hoc manner, but within the
neutral-data comparisons framework of Spitzner (2011), whose basic elements are now described.

Neutral-data comparisons derive from an exercise involving imaginary data, in which the analyst, when
consideringMs vsMt, subjectively chooses a set of “neutral data,” Ỹ st, which is to represent a configu-
ration of “no evidence for either model.” (Guidelines for specifying Ỹ st are discussed in Section 2.2 below.)
The component-specific conditional neutral-data comparison paralleling (4) is

NDCst,i(Y i|φ, τ ) =
BFi(Y i|φ, τ )

BFi(Ỹ st,i|φ, τ )
. (5)

This quantity may be interpreted in various ways discussed in Spitzner (2011), and is to serve in place of (4)
when assessing the weight of evidence for a “signal.” The complete conditional neutral-data comparison,
to substitute for (3), is

NDCst(Y |φ, τ ) =
BFst(Y |φ, τ )

BFst(Ỹ st|φ, τ )
. (6)
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One practical advantage of neutral-data comparisons over Bayes factors is that they are drastically less
sensitive to the dispersion of the prior, and thus produce an informative assessments even when the prior
is vague.

Although both Bayes factors and neutral-data comparisons are invariant to prior model probabilities,
it is straightforward to deduce that the choice of neutral data has a direct impact on those probabilities,
which, in turn, impacts the posterior distribution as a whole. Such connections are understood through an
alternative characterization of a Bayes factor, by which formula (3) is identical to the ratio of posterior to
prior odds; by rearranging terms, this characterization implies

ρst(φ, τ ) = ρ̃st(φ, τ )/BFst(Ỹ |φ, τ ), (7)

having written ρst(φ, τ ) = P [Ms|φ, τ ]/P [Mt|φ, τ ] and ρ̃st(φ, τ ) = P [Ms|Ỹ st,φ, τ ]/P [Mt|Ỹ st,φ, τ ].
In formulating an analysis, one of ρst(φ, τ ) or ρ̃st(φ, τ ) is to be specified by the analyst; typical settings
are ρst(φ, τ ) = 1 when working with Bayes factors, or ρ̃st(φ, τ ) = 1 when working with neutral-data
comparisons, which are applied in the analysis of Section 3. Instead of solving (7), the analyst may instead
work with the formulas

P [Ms|Y ,φ, τ ]/P [Mt|Y ,φ, τ ] = ρst(φ, τ )BFst(Y |φ, τ ) = ρ̃st(φ, τ )NDCst(Y |φ, τ ), (8)

which are implied from (3), (6), and (7).

2.2 Selecting neutral data

The proposed scheme for specifying Ỹ st builds on insights deduced in Spitzner (2011), in which asymp-
totic settings of neutral data are identified that induce the neutral-data comparison to reflect the standard
asymptotic behavior of a Bayes factor. In particular, a proposed default setting for Case 1, the Gaussian
case, has ‖Z̃st,i‖2 ≈ ν logn, as n → ∞, where Z̃st,i is the neutral-data analogue to Zi = n1/2Σ−1/2Ȳ i,
writing Ȳ i = n−1∑n

j=1 Y ij . The present investigation contributes to that line of inquiry by translating
Spitzner’s (2011) asymptotic setting to a meaningful exact setting that may be manipulated for good per-
formance within the variable selection context. The approach concentrates on identifying a suitable target
value for BFi(Ỹ st|φ, τ ), the denominator in formula (5).

To this end, let us continue to work within Case 1, and consider the formula for the relevant Bayes factor
implied by the prior θi|τ2 ∼ G(0, τ2∆),

BFi(Ỹ st|φi, τ ) = |I + τ2nΣ−1/2∆Σ−1/2|1/2 exp

{
−1

2
Z̃
T

st,iWZ̃st,i

}
, (9)

where W = {I + Σ1/2∆−1Σ1/2/(τ2n)}−1. Identification of a target value for (9) is made using ideas
borrowed from Spiegelhalter and Smith (1982), by which the desired value is to reflect two criteria:

a. The sample size, n, is the smallest possible that permits comparison ofMs vsMt

b. The target value indicates maximum support forMs.

Application of criterion (b), especially, requires a certain level of judgment by the analyst. Spiegelhalter
and Smith (1982) argue for the target value BFi(Ỹ st|φi, τ ) = 1, having set n = 1, which is sensible
for their particular context. In the present context, the target value will ultimately be determined from a
performance evaluation described in Section 2.3, below. However, a step in that direction is possible by
adding a third criterion, which customizes Spiegelhalter and Smith’s guidelines to the motivating concerns
of the neutral-data comparisons framework:

c. The target value responds to changes in prior dispersion in the manner of a Bayes factor.

Germane to criterion (c) is the property that if the prior on a ν-dimensional parameter is from a scale family,
π(θ) = τ−νπ∗(θ/τ), then, in regular problems, the corresponding Bayes factors are related according to
BF ≈ τνBF ∗ as τ → ∞. For example, this property is evident in formula (9). Bringing together criteria
(a), (b), and (c) points to a specific parameterization of the target value given by

BFi(Ỹ st|φ, τ ) = τν |Σ−1/2∆Σ−1/2|1/2/γst, (10)

where the quantity γst is to be determined in Section 2.3.
Once identifying a target value, it is straightforward to solve (9) for a suitable specification of neutral

data, which produces

Z̃
T

st,iWZ̃st,i = ν logn− log |W |+ 2 log γst. (11)
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Of course, it is not strictly necessary to solve for neutral data, since only the target value (10) is needed to
deduce, by (4), that the component-specific conditional neutral-data comparison is

NDCst,i(Y |φ, τ ) = γstn
ν/2|W |1/2 exp

{
−1

2
ZTi WZi

}
. (12)

These ideas readily extend to Case 2, the regular non-Gaussian case, in which asymptotic Gaussianity
of the maximum-likelihood value, θ̂i, sets up a parallel argument for specifying neutral data. In this case,
it is proposed that one work as if the θ̂i serve in place of the data, strictly for the purpose of selecting
neutral data, and subsequently recalculate the neutral-data conditional Bayes factor (9) using the inverted
“null-value” Fisher information matrix I(θ0i ,φi)

−1 in place of Σ. Taking the prior to have the form (2), the
target value is

BFni,i(Ỹ st|φi, τ ) = τνii |I(θ0i ,φi)
1/2∆i(φi, τ )I(θ0i ,φi)

1/2|1/2/γst, (13)

where νi is the dimension of θi. The desired conditional neutral-data comparison, the analogue to (12),
is calculated as the ratio of (4) to (13). This proposed solution for Case 2 cannot justly be called an exact
solution, as (10) has been described for Case 1, but it nevertheless refines the type of asymptotic results
derived in Spitzner (2011).

2.3 Asymptotic consistency in variable selection
Translating the calibration scheme outlined descriptively in Section 2.1, the constants γst are to be selected
in such a way that, in an elementary test for whichMs vsMt is such that As = At ∪ {i}, the constant γst
is small when |As| is small and large when |As| is large. The specific proposed setting of this quantity is

γst = |As|. (14)

Justification for this setting derives from an examination of asymptotic consistency in a specialized version
of the current setup. However, before considering asymptotic consistency it is interesting to note that (14)
reduces to γst = 1 where there are only two models. The setting γst = 1 regarded here, for illustrative
purposes, to define an “unadjusted” setting for neutral data, when multiplicity is to be ignored. Spitzner
(2014) argues that γst = 1 would also serve well as a general “default” setting to use when defining neutral
data, but such an interpretation is not pursued here.

Regarding asymptotic consistency, the specialized setup alluded to above constrains the choice of prior
model odds, the ρst(φ, τ ) in (7), to reflect that case where the events {θi = θ0i } (i.e., “non-signals”) are
conditionally independent. It follows that any conditional posterior model probability factors according to

P [Ms|Y ,φ, τ ] =

{∏
i∈As

P [{θi = θ0i }|Y i,φi, τ ]

}∏
i/∈As

P [{θi = θ0i }c|Y i,φi, τ ]

 . (15)

In this context, neutral data need no longer be test-specific (i.e., the subscript of Ỹ st can go away), but the
same Ỹ , specified component by component, can be applied to everyMs vsMt. Thus, for example, in
Case 1, the component posterior probabilities in (15) are

P [{θi = θ0i }|Y i,φi, τ ] =
{

1 + e
1
2
(ZT

i WZi−Z̃
T
i WZ̃i)

}−1

, (16)

assuming ρ̃st(φ, τ ) = 1, where the same Z̃i always serves as neutral-data in component i.
One way to implement a formal asymptotic analysis is to suppose there is a hypothetical connection

between sample size, n, and the number of components, p = pn, such that pn → ∞ as n → ∞. Let us
adopt that supposition, and furthermore suppose that one particular model, M∗n, with associated subset
A∗n ⊂ {1, . . . , pn} and parameter θ∗ = (θ∗i : i /∈ A∗n), is singled out as the “true” model. The goal of the
analysis is to identify settings of Ỹ that induce asymptotic consistency, P [M∗n|Y ] → 1 as n → ∞, for
data generated under M∗n. (See Polson and Scott, 2011, for an alternative to this sort of analysis.) The
following result identifies a class of solutions to this problem.

Theorem 1. Suppose, in Case 1, that ρ̃st(φ, τ ) = 1, and data are generated under the modelM∗n. One
has P [M∗n|Y ]→ 1 if, for some sequence Cn →∞, neutral-data Z̃i are such that

(i) Z̃
T

i WZ̃i ≥ ν logn− log |W |+ 2 log |A∗n|+ Cn
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(ii) Z̃
T

i WZ̃i ≤ nθ∗Ti Σ−1/2W (I +W )−1Σ−1/2θ∗i − 2 log |A∗cn | − Cn.

Similarly, one has lim infn P [M∗n|Y ] > 0 if the criteria (i) and (ii) are instead satisfied for a convergent
sequence Cn.

For perspective on Theorem 1, it is worthwhile to consider the asymptotic context laid out by Fan and
Lv (2008) that articulates the notion of “sparse signals” in “ultra-high dimensional” space. In that context,
the number of components is allowed to increase at up to an exponential rate, constrained only by log pn =
O(na) for some a > 0; concurrently, signals may arise at a very slow rate at continually weaker strength: for
some b > 0 with a < 1− b, it is only necessary that some c > 0 exist such that mini∈A∗

n
θ∗Ti Σ−1θ∗i ≥ cn−b.

Under these constraints, the conditions of Theorem 1 are satisfied by the settings Z̃
T

i WZ̃i = nd and
Cn = n(d−a)/2, whenever a < d < 1 − b. (To see this, note that log |A∗n| ≤ log pn ≤ na, eventually, in
criterion i, and that W → I in criterion ii). This means that the neutral-data formulation to the variable
selection problem is among the very few statistical procedures (cf. Fan and Lv, 2010, for others) that are
able to identify a sparse “true” model in ultra-high dimensions.

Nevertheless, despite its desirable properties, the setting Z̃
T

i WZ̃i = nd may be difficult to work with in
practice, because the exponent, d, is a vaguely defined parameter of the asymptotic context. The setting
γst = |As|, as in (14), is preferred for its definitiveness and precision, and is regarded to define an adaptive
solution that is intended to induce one of the asymptotically consistent settings identified in Theorem 1.
To see how (14) forms an adaptive solution, suppose Ms vs Mt arises within a reversible-jump MCMC
algorithm that is evolving in a region near M∗n. (It is assumed the reader has a basic familiarity with the
reversible-jump algorithm; otherwise, see Robert and Casella, 1999.) In that scenario, the count, |As|,
of non-signals in Ms is near to the same count in the true model, |A∗n|, hence the Z̃

T

st,iWZ̃st,i defined
by the setting (14) within formula (11) likely resembles an asymptotically consistent setting of Z̃

T

i WZ̃i
identified in Theorem 1.i. Such arguments do not constitute a proof of asymptotic consistency, but they are
compelling, nonetheless, in suggesting that the rule (14) gives rise to an effective multiplicity adjustment.

The adaptive solution (14) may be regarded as incorporating a mechanism for “estimating” |A∗n|, the
count of non-signals in the true model. Other possible mechanisms intended for the same purpose might
also be considered. For example, Berry and Berry, formulate a hierarchical solution in which a hyper-
prior is specified on |A∗n|. It is not clear, however, which hyper-priors, if any, will yield an asymptotically
consistent solution. Through the argument made above, Theorem 1 is seen to offer support for the efficacy
of the proposed adaptive solution. As will be seen in Section 3.3, below, the two solutions produces widely
differing results.

3 Illustration: Adverse events in a vaccine trial
The proposed multiplicity adjustment is now explored in the analysis of the adverse-event data examined in
Berry and Berry (2004). The context and likelihood function are described as Case 3 in Section 2.1. Raw
relative frequencies, p̂ijk = Yijk/ni, and AE-type groupings into body systems are listed below in Table 1.
Recall that, under model Ms, the subset As,2 indicates the most worrisome AE-types, for which there is
an increased probability of an adverse event under the vaccine treatment.

3.1 The multiplicity adjustment
The context of this problem is, at its core, a specialization of Case 2, for which the issue of specifying
neutral data is discussed at the end of Section 2.2. The required asymptotic variance formula follows from
standard asymptotic theory, by which the maximum-likelihood value, θ̂jk, for θjk at fixed φjk is asymptoti-
cally Gaussian, with asymptotic variance

σ2
jk =

1

n1 + n2

{
eφjk

1 + eφjk

(
1− eφjk

1 + eφjk

)}−1

(17)

when θjk is set to its “null” value, θ0jk = 0. Also needed, to apply criterion (a), is a notion of sample size
“as small as possible,” which in the present scenario is taken to mean n1 = n2 = 1, as is consistent
with Spiegelhalter and Smith’s (1982) handling multi-sample designs. It follows that, for a prior of the form
θjk|φjk, τ ∼ G(0, τ2δ2jk(τ )), which matches that in Berry and Berry (2004), the component-specific target
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Figure 1: Evidence assessments of an adverse event on Berry and Berry’s (2004) data for τ between 1
and 100, plotted on a standard scale of evidence. The left panel plots transformed Bayes factors, the
middle panel plots transformed, unadjusted neutral-data comparisons, and the right panel plots transformed
neutral-data comparisons that are adjusted for multiple models. Assessments are reported only of the four
AE-types indexed by (j, k) = (3, 4), (8, 3), (10, 4), and (10, 6).

value (10) is

BFjk(Ỹ st|φ, τ ) =
τδjk(τ )

γst

√
1

2

{
eφjk

1 + eφjk

(
1− eφjk

1 + eφjk

)}−1

. (18)

The hierarchical parameters, τ , and other remaining aspects of the prior are defined in Section 3.2, below.
Recall that (18) is only needed when Ms vs Mt forms an elementary test such that As,0 = At,0 ∪

{(j, k)} for some (j, k) ∈ Ω, which implies that either As,1 = At,1 − {(j, k)} or As,2 = At,2 − {(j, k)}.
Only in those cases is the multiplicity adjustment explicitly defined, through γst. In the present context, the
correct setting, translating from (14), is γst = |As,0|.

3.2 The hierarchical prior
When formulating a prior for flagging AE-types, Berry and Berry suggest consideration of at least the
following three issues: the scientific relationships among all of the AE-types; the total number of AE-types;
and, the relationship between AE-types that are flagged and not flagged. Berry and Berry incorporate the
latter two considerations into a hierarchical specification of prior model probabilities, which serves, in effect,
as a hyper-prior on |As,0|. In the present analysis, the hyper-prior is replaced by the proposed adaptive
scheme, which incorporates the same two considerations by alternative means.

Berry and Berry’s first consideration, the scientific relationships among AE-types, is incorporated into
the continuous portion of the prior. That portion is duplicated exactly in the present analysis: Each
φjk|τ20A, τ20B ∼ G

(
0, τ20A + τ20B + τ2

)
and, independently, each θjk|τ21A,j , τ21B ∼ G

(
0, τ21A,j + τ21B + τ2

)
,

for hierarchical parameters τ2, τ2H , τ20A, τ20B , τ21A,j for j ∈ J , τ21B , which are collected into τ . (Berry and
Berry construct their prior slightly differently through a “three-stage” hierarchy, but it readily collapses to
the two-stage form just described.) Among the hierarchical parameters, τ2 and τ2H are fixed constants
to be set explicitly, while τ20A, τ20B , τ21A,j , and τ21B are independent parameters such that τ2H/τ

2
0A ∼ χκ,

τ2H/τ
2
0B ∼ χκ, τ2H/τ

2
1A,j ∼ χκ, and τ2H/τ

2
1B ∼ χκ for an additional prior parameter κ. Berry and Berry

specify τ2 = 10, τ2H = 2, and κ = 6; these and other settings are examined in the analysis below.
Calculations are made using the reversible-jump MCMC algorithm alluded to in Section 2.3. The al-

gorithm is implemented by making reversible jumps on individual θjk at fixed values of the remaining
parameters. Proposed jumps from (θ0s,jk, φs,jk) in model Ms to (θt,jk, φt,jk) in model Mt are defined
through the invertible transformation φt,jk = 1

4
φs,jk{4 + a(u)} and θt,jk = 1

4
φs,jk{4 − a(u)}, where

a(u) = 1/u− 1/(1− u) and u ∼ Beta(2, 2).
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B&B NDC, unadj. NDC, adj.
j k p̂1jk p̂2jk eq. AE eq. AE eq. AE
1 1 0.303 0.385 0.762 0.211 0.392 0.601 0.956 0.043
1 2 0.197 0.230 0.827 0.122 0.798 0.180 0.992 0.007
1 3 0.000 0.014 0.796 0.101 0.054 0.944 0.947 0.053
1 4 0.008 0.020 0.813 0.100 0.765 0.216 0.992 0.008
1 5 0.152 0.182 0.826 0.116 0.798 0.179 0.993 0.007
3 1 0.015 0.047 0.821 0.117 0.328 0.666 0.949 0.050
3 2 0.000 0.014 0.835 0.083 0.067 0.932 0.738 0.261
3 3 0.000 0.014 0.812 0.101 0.068 0.930 0.859 0.141
3 4 0.076 0.162 0.743 0.231 0.030 0.969 0.517 0.483
3 5 0.008 0.020 0.823 0.093 0.767 0.214 0.992 0.008
3 6 0.053 0.014 0.805 0.050 0.211 0.003 0.910 0.000
3 7 0.144 0.128 0.849 0.076 0.890 0.044 0.996 0.002
5 1 0.015 0.020 0.717 0.136 0.882 0.083 0.996 0.003
6 1 0.015 0.000 0.666 0.087 0.039 0.001 0.431 0.000
8 1 0.000 0.014 0.655 0.185 0.023 0.977 0.749 0.251
8 2 0.015 0.014 0.661 0.153 0.898 0.048 0.997 0.001
8 3 0.326 0.507 0.214 0.780 0.001 0.999 0.033 0.967
9 1 0.008 0.027 0.900 0.059 0.560 0.428 0.981 0.019
9 2 0.015 0.027 0.901 0.058 0.828 0.147 0.994 0.005
9 3 0.015 0.007 0.896 0.040 0.858 0.026 0.995 0.001
9 4 0.061 0.088 0.906 0.062 0.758 0.223 0.991 0.008
9 5 0.152 0.189 0.897 0.083 0.754 0.228 0.990 0.009
9 6 0.008 0.014 0.898 0.047 0.870 0.101 0.996 0.003
9 7 0.061 0.088 0.906 0.061 0.758 0.223 0.991 0.008
9 8 0.106 0.101 0.904 0.051 0.894 0.055 0.997 0.002
9 9 0.008 0.020 0.903 0.051 0.766 0.215 0.992 0.008
9 10 0.008 0.014 0.905 0.042 0.870 0.101 0.996 0.003
9 11 0.008 0.020 0.907 0.050 0.769 0.212 0.992 0.008

10 1 0.000 0.027 0.859 0.087 0.001 0.999 0.065 0.935
10 2 0.000 0.014 0.860 0.070 0.001 0.999 0.945 0.054
10 3 0.008 0.014 0.868 0.062 0.872 0.099 0.996 0.003
10 4 0.023 0.088 0.784 0.190 0.011 0.989 0.287 0.713
10 5 0.015 0.041 0.852 0.099 0.540 0.450 0.978 0.022
10 6 0.008 0.054 0.836 0.126 0.014 0.986 0.364 0.636
10 7 0.015 0.027 0.862 0.076 0.828 0.148 0.994 0.005
10 8 0.015 0.000 0.852 0.048 0.009 0.000 0.798 0.000
10 9 0.015 0.007 0.855 0.055 0.857 0.026 0.995 0.001
11 1 0.015 0.000 0.721 0.079 0.008 0.000 0.789 0.000
11 2 0.106 0.122 0.757 0.102 0.858 0.111 0.995 0.004
11 3 0.008 0.014 0.749 0.121 0.872 0.099 0.996 0.003

Table 1: Posterior probabilities on Berry and Berry’s (2004) adverse-event data. Index values are listed
for body system (j) and AE-type (k) in the first pair of columns; the remaining columns list raw adverse-
event relative frequencies, followed by the posterior probabilities from Berry and Berry’s (2004) analysis
(headed “B & B”), then those derived from unadjusted neutral-data comparisons, and finally those derived
from neutral-data comparisons that are adjusted for multiple models. The columns labeled “eq.” list posterior
probabilities that the rates of adverse events between treatment and control conditions are equal, and those
labeled “AE” list posterior probabilities of an adverse event.
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3.3 Analysis results
Results of the analysis, in a variety of configurations, are indicated in Figure 1 and Table 1. Data analysis
is carried out repeatedly across twenty values of the scale parameter τ2 in the range 1 ≤ τ ≤ 100, which
forms the horizontal axis in each panel of Figure 1, all while holding constant the ratio τ2/τ2H = 5, and the
parameter κ = 6. Each panel plots the relevant assessments after having been transformed according to
2 log{P [E(j,k)|Y ]/(1 − P [E(j,k)|Y ])}, where E(j,k) collects all modelsMs such that (j, k) ∈ As,2. That is,
the values plotted in Figure 1 indicate support for an adverse event of type j in body-system k, transformed
for interpretation on Kass and Raftery’s (1995) scale of evidence. Only four AE-types are represented in
Figure 1, those with index values (j, k) = (3, 4), (8, 3), (10, 4), and (10, 6), which were selected by Berry
and Berry for having been flagged in a previous frequentist analysis. Selected results for all AE-types are
listed in Table 1, but only at τ = 100.

The three panels of Figure 1 show results of the proposed procedure in three configurations of the
discrete prior: the configuration represented in the left panel has ρst(φ, τ ) = 1 in formula (7), hence the
results shown are from Bayes factors; that of the middle panel has ρ̃st(φ, τ ) = 1 and γst = 1, hence the
results are from “unadjusted” neutral-data comparisons (cf. the discussion below formula 14); and, the right
panel is like the middle one, but with γst = |As,0|, thereby specifying the proposed multiplicity adjustment.
The latter two configurations are also represented in Table 1, as posterior probabilities, alongside Berry
and Berry’s results for comparison.

As expected, and illustrated in Figure 1, support for an adverse event drastically weakens as τ grows
large when it is reported by a Bayes factor, but it eventually stabilizes when it is reported by a neutral-data
comparison. “Strong” evidence of an AE (a reported value above 6) of every selected type is indicated in
the middle panel, with each neutral-data comparison stabilizing (by coincidence) near the maximum of the
corresponding Bayes factor in the left panel. Comparison with the right panel illustrates how the multiple-
model adjustment weakens evidence across the board, so much that “strong” support of an AE remains
only for the AE-type at (j, k) = (8, 3). The adjustment ultimately induces a beneficial clarifying effect of
reducing the collection of several suspicious AE-types to just one that is to be flagged.

In Table 1, it is seen that Berry and Berry’s prior weakens the reported evidence even more, to the point
where no strong evidence of an AE is exhibited among any of the forty AE-types. Consider that on Berry
and Berry’s results the transformation 2 log{P [E(j,k)|Y ]/(1 − P [E(j,k)|Y ])} yields the values -2.41, 2.53,
-2.90, and -3.87 for (j, k) = (3, 4), (8, 3), (10, 4), and (10, 6). These transformed assessments are much
different than those of the adjusted neutral-data comparisons, and it is interesting that Berry and Berry’s
results are also hard to place among the patterns exhibited in Figure 1: even at τ = 100, the Bayes factors
in the left panel report much stronger evidence than those of Berry and Berry, and yet the neutral-data
comparisons of the other two panels are well past the point of having stabilized with respect to τ . From this
perspective, the prior dependencies introduced in Berry and Berry’s hierarchical discrete prior are seen to
have an astoundingly strong effect.

4 Conclusions
The main conclusion is that the proposed multiplicity adjustment for variable selection is capable of incor-
porating relevant scientific goals, is straightforward and not difficult to implement using MCMC simulation,
and is effective at clarifying evidence of signals and non-signals. The methodology is distinct from widely
used decision-theoretic formulations of a multiplicity adjustment, and distinct from Berry and Berry’s ap-
proach based on hierarchical modeling, although the latter is similar in formulating the adjustment through
the discrete portion of the prior. A reanalysis of Berry and Berry’s adverse-event data set suggests that
the original analysis applies an adjustment that is perhaps too drastic, while the proposed solution, on the
basis of its support from asymptotic theory, produces a more judicious assessment of evidence.

The article also contributes to the developing theory of neutral-data comparisons, by demonstrating
a role for Spiegelhalter and Smith’s (1982) criteria for eliciting imaginary data. Further refinement of the
criteria laid out in Section 2, and of our general understanding of neutral data, is possible and desired as
the concept is developed for more complex applications. For instance, the definition of “minimal sample
size” can be unclear in some scenarios, although various ideas have been proposed to make that concept
precise; e.g., see Berger and Pericchi (1996). Such issues, and the impulse to resolve them, are no doubt
important to future development of the concepts used here.

The proposed multiplicity adjustment is intriguing for its simplicity and apparent effectiveness, but it
remains to explore the technique in more general scenarios. The rule (14) has been shown to yield out-
standing performance when the Y i are independent; as for the dependent case, some preliminary results
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have been obtained pointing to the same rule proposed here, but that investigation is ongoing and its
results will be reported elsewhere. Beyond variable selection, the general scheme explored here is so
straightforward that it would seem to adapt well to complex settings such as partition analysis or graphical
models. In these more complex scenarios, tracking the connections between models presents a consid-
erable challenge to theoretical analysis; nevertheless, it is hoped that the ideas presented here offer a
productive means of exploring these problems and developing effective analysis approaches to them.

A Appendix
Proof. (THEOREM 1) The inequality log(1 + x) ≤ x provides that − logP [M∗n|Y ] is bounded above by

Bn =
∑
i∈A∗

n
exp{ 1

2
(ZTi WZi − Z̃

T

i WZ̃i)}+
∑
i/∈A∗

n
exp{ 1

2
(Z̃

T

i WZ̃i −ZTi WZi)}.

Because the terms in Bn are independent and each is non-negative, an extension of the Borel-Cantelli
lemmas (cf. Billingsley, 1995, prob. 22.3, p. 294) provides that Bn converges almost surely, and there-
fore lim infn P [M∗n|Y n] > 0, whenever its expectation, E[Bn], converges; also P [M∗n|Y ] → 1 when
E[Bn]→ −∞. EachZTi WZi is a quadratic form of Gaussian random variables, whose properties are well
known. The corresponding moment generating functions, evaluated underM∗n, imply E[Bn] =

∑
i∈A∗

n
|I−

W |−1/2 exp{− 1
2
Z̃
T

i WZ̃i}+
∑
i/∈A∗

n
|I +W |−1/2 exp[ 1

2
{Z̃Ti WZ̃i − nθ∗Ti Σ−1/2W (I +W )−1Σ−1/2θ∗i }],

which links to criteria (i) and (ii) in the manner they describe conditions under which E[Bn] conver-
gences.
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