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Abstract 

Automated vehicle developers in California are required to submit records of crashes and 

distances traveled in autonomous mode for all vehicles in their fleets. Several studies have 

investigated this database to compare automated vehicle crash rates with national rates. Although 

automated vehicles are struck from behind in 73% of their autonomous mode crashes, this is the 

first study to compare automated vehicle struck-from-behind crash rates to national rates using 

equivalent crash definitions. Rear-end collisions have substantial public health and economic 

impacts, representing a third of all collisions and $3.9 B in annual economic costs. In this study, 

automated vehicles were found to be struck from behind while in autonomous mode 17.2 (14.2–

20.7, 95% CI) times per million-miles traveled, significantly higher than human-driven vehicles 

in naturalistic driving studies (3.6, 3.0–4.3, 95% CI). These differences narrow when comparing 

urban driving and business/industrial driving in the naturalistic driving studies with AV testing in 

similar environments. Automated vehicles were more likely to be struck when stopped than 

when moving, suggesting that automated vehicles’ decisions about where and when to stop at 

intersection are more plausible as contributing factors than unexpected rates of deceleration. 
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1 Introduction 

Vehicles with automated driving features, defined here as combined lateral and longitudinal 

control, have been tested on public roads in the United States nearly continuously since 2010 

(Beiker, 2014). In September 2014, the California Department of Motor Vehicles began 

requiring companies wishing to test AVs on public roads to obtain permits (California 

Department of Motor Vehicles, 2018). All permit holders were required to report all crashes 

using form OL 316 within 10 days of the incident, regardless of severity or whether the vehicle 

was under human or computer control. Permit holders were also required report all test vehicles, 

miles driven in autonomous mode, and disengagements of the autonomous driving system by 

January 1st for the prior period of December to November. The combined public data sets of 

vehicle crashes and mileages for all autonomous vehicle testing in California proved a valuable 

resource for researchers, and several studies have shown that automated vehicle (AV) crash rates 

are lower than general public crash rates when controlling for crash severity (Blanco et al., 2016; 

Teoh and Kidd, 2017). Studies have also reported that a majority of AV crashes involve the 

automated vehicle being struck from behind (Leilabadi and Schmidt, 2019). As a proportion of 

total crashes, these are far higher than those reported by the driving public (Favarò et al., 2017).  

 Struck-from-behind crashes are a significant economic and public health concern. Rear 

end collisions account for 32.3% of all crashes in the United States (National Highway Traffic 

Safety Administration, 2020a, p. 29). Economic losses from whiplash injuries were estimated as 

$2.7 B nationally in 2002 dollars ($3.9 B in 2020) (“Federal Motor Vehicle Safety Standards; 

Head Restraints,” 2010).  

Previous studies have investigated the AV crash rates generally, but none have compared 

AV and human-driven struck-from-behind crash rates. The purposes of this study are to 

determine whether AVs are struck from behind at higher rates per distance traveled than 

conventional vehicles, and to investigate potential causes.  

 

2 Literature Review 

Several studies have analyzed automated vehicle crash records, differing in the methods and 

metrics. Table 1 shows an overview of automated vehicle crash studies and comparisons in the 

literature. Some studies did not calculate crash rates but instead performed exploratory analysis 

(Das et al., 2020), text mined crash narratives (Alambeigi et al., 2020; Boggs et al., 2020b), or 

modeled crash severity (Wang and Li, 2019). Other studies calculated automated vehicle crash 

rates but did not compare them with baseline figures (Leilabadi and Schmidt, 2019). 

Schoettle and Sivak (2015) conducted the first study to compare automated vehicle crash 

rates to conventional vehicle crash rates. The authors found the AV crash rate of 9.1 crashes per 

million miles to be higher than the conventional vehicle crash rate of 4.1, although 95th percentile 

confidence intervals overlapped due in part to the small sample size of AV crashes with only 11 

crashes over 1.2 million miles. The authors also compared the full set of DMV-reported AV 

crashes with NHTSA’s General Estimates System (GES). This comparison is not equivalent, 

however, as the AV crash rate includes no-damage crashes while the GES human-driven crash 
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rate is based on estimates of crashes that meet minimum thresholds of damage or injury for 

police reporting (Blanco et al., 2016; National Highway Traffic Safety Administration, 2020b). 

Favarò et al. (2017) conducted a similar study comparing AV crashes rates from DMV reports 

with GES national crash rate estimates, which again suffers from incompatible crash definitions.  

 

Table 1 Automated Vehicle Crash Studies and Comparisons in the Literature 

AV Metric 
AV Crashes per 

Million Miles 
Baseline Metric 

Baseline Crashes 

per Million 

Miles 

Source 

- - - Modeled crash 

severity. 

(Wang and Li, 2019) 

- - - Text mined 

narratives, 

correlated risk 

factors. 

(Boggs et al., 2020b) 

- - - Probabilistic 

topic modeling 

of crash 

narratives. 

(Alambeigi et al., 2020) 

- - - Exploratory 

analysis. 

(Das et al., 2020) 

All crashes 23.4 in 2018 - - (Leilabadi and Schmidt, 

2019) 

All crashes 9.1 (4.5,16.3) Police-reportable crash estimates 4.1 (3.5, 4.7) (Schoettle and Sivak, 2015) 

All crashes 23.8 Reported crashes 2.0 (Favarò et al., 2017) 

All crashes 21.2 Reported by CHP, limited 

coverage 

0.5 (Dixit et al., 2016) 

Waymo police-reportable in 

California 

2.19 (0.44, 6.39) Police-reported in Mountain View 6.06 (5.93, 6.18) (Teoh and Kidd, 2017) 

Google police-reportable 4.57 (2.09, 8.68) Police-reported 3.59 (2.31, 4.87) (Teoh and Kidd, 2017) 

*All Waymo crashes 9.7 (5.8, 15.1) SHRP 2 all crashes  27.6 (25.8, 29.5) (Teoh and Kidd, 2017) 

*All Waymo rear-end struck 7.1 (3.9, 11.9) SHRP 2 rear-end struck 2.7 (2.1, 3.3) (Teoh and Kidd, 2017) 

All Waymo Crashes 8.8 (2.6, 22.8) All SHRP 2  26.8 (23.9, 30.1) (Blanco et al., 2016) 

*All Waymo Crashes  8.8 (2.6, 22.8) All SHRP 2, age-adjusted 20.2 (17.7, 23.0) (Blanco et al., 2016) 

Waymo Police-Reportable  3.2 (0.4, 11.4) SHRP 2 police reported 1.4 (0.9, 2) (Blanco et al., 2016) 

Waymo Police-Reportable  3.2 (0.4, 11.4) SHRP 2 police reported, age-

adjusted 

0.9 (0.5, 1.5) (Blanco et al., 2016) 

Waymo Police-Reportable 3.2 (0.4, 11.4) SHRP 2 police reportable 8.2 (6.9, 9.7) (Blanco et al., 2016) 

*Waymo Police-Reportable 3.2 (0.4, 11.4) SHRP 2 police reportable, age-

adjusted 

5.8 (4.7, 7.0) (Blanco et al., 2016) 

*Waymo Police-Reportable  3.2 (0.4, 11.4) NHTSA police reportable 4.2 (2.8, 9.9) (Blanco et al., 2016) 

* Metrics use dissimilar crash definitions and are directly comparable. 

 

Dixit et al. (2016) studied crashes and disengagements of automated vehicles in 

California from September 2014 to November 2015. Waymo’s vehicles over this time period 

crashed at a rate of 21.2 crashes per million miles. Dixit et al. compared Waymo’s crash rate 

with the California Highway Patrol’s estimated statewide crash rate of 0.5 crashes per million 
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miles, but the two datasets are not comparable. The authors note that California Highway Patrol 

records only cover State, U.S., and Interstate roads, while much AV testing is performed on local 

streets with generally higher crash rates. The authors fail to note that although Waymo is 

required to report all crashes, even those with no damage, California Highway Patrol records 

would only record crashes that met reporting criteria, were reported to police, and entered into 

the database. Past national studies estimate that 15% of injury crashes and 24% of property 

damage-only crashes are never reported to police (M. Davis and Company, Inc., 2015), while an 

additional 9% of injury crashes and 24% of property damage-only crashes are reported but not 

entered into databases (Blincoe et al., 2015). Based on these estimates and evidence from the 

Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS), Blanco 

et al. (2016) estimated national-level crash rates of between 2.75 and 9.87 crashes per million 

miles, far higher than 0.5 estimated by California Highway Patrol. When including minor crashes 

that AVs must report to California DMV but that do not meet police-reporting thresholds, Blanco 

et al. (2016)estimates a crash rate of 20.2 crashes per million miles.  

Teoh and Kidd (2017) calculated crash rates for all Google1 automated vehicles, 

supplementing the California DMV reports with Google’s monthly activity reports describing 

crashes and mileages outside California. As all of Google’s pre-2016 crashes occurred in 

Mountain View, California, the AV crash rate was compared to general crash rates for Mountain 

View, surrounding Santa Clara County, and the state of California. While the regional crash rates 

used police-reported crashes, the Google data was restricted to crashes that met the minimum 

threshold for police-reporting regardless of specific crashes were actually reported. This 

distinction would seem to inflate the number of Google crashes, as several of their crashes 

seemed to meet reporting requirements yet were not reported, while in others the police were 

called but declined to respond.  Teoh and Kidd (2017) further compared all Google crashes with 

the full SHRP 2 NDS crash rate, although they appear to have used raw NDS data when NDS 

subject selection was weighted towards young and older drivers who were at higher risk (Antin 

et al., 2019). They found that drivers in the SHRP 2 NDS crashed at higher rates than Google’s 

AVs (27.6 vs. 9.7 crashes per million miles) and that this difference was statistically significant 

at 95% confidence intervals. The authors evaluated struck-from-behind crash rates and found 

that Google’s rear-end-struck rate of 7.1 (3.9–11.9, 95% CI) was higher than the SHRP2 NDS 

unweighted rate of 2.7 (2.1–3.3, 95% CI) crashes per million miles.  

Blanco et al. (2016) compared the crash rate of automated vehicles operated by Google in 

California from May 2010 to October 31, 2015. At that time, Google had driven over 2.3 million 

miles of which 1,266,611 miles were in autonomous mode. Over the same period, Google’s cars 

had been involved in 16 crashes, of which 11 occurred while the vehicle was operating in 

autonomous mode. Google’s crash rate for automated vehicles was therefore 11 crashes per 

 

 

 
1 The Google Self-Driving Car Project was renamed Waymo in 2016. For consistency in the Literature Review, 

whichever name used in a reference is used here. Waymo data in the Results section includes data from both 

Waymo and the Google Self-Driving Car Project. 
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1,266,611 miles, or 8.7 crashes per million miles. The authors chose to compare crashes that 

were police-reportable, defined roughly as resulting in more than $1500 in damage, significant 

impacts (e.g. delta-v > 20 mi/hr or acceleration > 1.3g excluding curb strikes), or contact with a 

large animal or sign. Seven Google crashes were considered not reportable by these definitions, 

resulting in four remaining crashes for a crash rate of 3.2 crashes per million miles. This was 

higher than the National Highway Traffic Safety Administration’s (NHTSA) estimate of 1.92 

police-reported crashes per million miles. NHTSA’s crash rate, however, includes only crashes 

that were reported to police and excludes those that either were not reported or were reported but 

never officially filed. The researchers used three sources to estimate the proportion of unreported 

crashes: NHTSA’s two published estimates (Blincoe et al., 2015; M. Davis and Company, Inc., 

2015) and the percentage of SHRP2 Naturalistic Driving Study crashes that met reporting 

standards but were never reported (Blanco et al., 2016). Combining these sources, the total 

national police-reportable crash rate was estimated as 4.2 per million miles, higher than Google’s 

crash rate of 3.2 per million miles.  

 Blanco et al. (2016) also compared Google’s crash rate across all crashes, even those 

which did not meet police-reportable thresholds, with all crashes from the SHRP 2 NDS data set. 

Google’s AVs crash rate was 8.8 (2.6–22.8, 95% CI) per million miles, while the SHRP 2 age-

adjusted crash rate was 20.2 (17.7–23.0, 95% CI) per million miles. Although Google’s crash 

rate was lower than the SHRP 2 data, the 95% confidence interval overlapped, providing weak 

evidence that crash rate means were unequal. 

 Although several studies have compared AV and human-driven crash rates, only two 

used compatible crash definitions for both AV and human-driven crashes (Blanco et al., 2016; 

Teoh and Kidd, 2017). Both studies evaluated only Google’s vehicles, which represent 63% of 

all autonomous miles driven in California. Teoh and Kidd (2017) compared struck-from-behind 

crash rates but used unweighted SHRP 2 NDS data that does not reflect the United States 

population, and again considered only Google’s vehicles.  

This study is the first effort to compare crash rates of all AV testing in California 

regardless of developer, using compatible crash definitions and age-weighted data that reflects 

the United States driving population. This represents the most accurate and thorough analysis of 

automated vehicle struck-from-behind crashes in the literature.    

 

3 Materials and Methods 

3.1 Automated Vehicle Crash Records 

Crash records were obtained from the California Department of Motor Vehicles (California 

Department of Motor Vehicles, 2020a). All automated vehicle developers wishing to test on 

public roads in California after May 2014 must obtain a Manufacturer’s Testing Permit and 

submit the OL316 form describing any crash involving one of the test vehicles, regardless of 

whether the vehicle was operating in autonomous mode at the time (California Department of 

Motor Vehicles, 2018). Recent reports are available online, while older reports can be requested 

via email (California Department of Motor Vehicles, 2020a). Each report provides basic 
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information about the crash such as date, time, vehicles involved, whether the AV was in manual 

or autonomous mode, and whether the AV was moving or stopped in traffic. Testers also provide 

a brief narrative of the crash which often includes additional details such as behavior of the other 

vehicle, whether police were contacted, and descriptions of any damage. For this study, 256 

OL316 forms were reviewed covering crashes between October 14, 2014 and March 10, 2020 

immediately prior to suspension of testing due to COVID-19 travel restrictions. Several 

attributes were manually collected from crash records, including date, company, vehicle stopped 

at the time of impact, vehicle struck from behind, “autonomous mode” box checked, and whether 

police were called or responded. Initially, the severity level was estimated using guidance from 

the SHRP 2 Naturalistic Driving study as performed in Blanco et al. (2016). This process was 

later abandoned, as the thresholds between severity levels were sensitive to assumptions—the 

severity of a small crash resulting in sensor damage depended largely on the cost of the sensor, 

and crashes resulting in neck pain complaints the following day could move a crash from Level 3 

to Level 1 even though there was no damage. Crash locations were obtained from a database 

shared by the authors of a recent study on AV disengagements (Das et al., 2020). 

While the OL316 form uses a checkbox to indicate whether the vehicle was operating in 

autonomous mode at the time of the crash, analysis of the crash narrative indicates that in 31 of 

the 88 manual mode crashes, the vehicle had been in autonomous mode immediately prior to the 

crash. In many instances, the vehicle was stopped the entire duration between transitioning to 

manual control and collision. In keeping with practices employed in other studies (Blanco et al., 

2016; Schoettle and Sivak, 2015), these crashes were classified as occurring in autonomous 

mode. Of the 122 autonomous mode rear-end-struck crashes obtained from the records, 18 

involved vehicles transitioning to manual control immediately prior to collision. 

A summary of crash record counts based on inclusion criteria is shown in Figure 1 
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Figure 1 Crash record inclusion criteria and counts. 

  

3.2 Automated Vehicle Mileage 

Each year by the first of January, testers must also submit disengagement reports detailing the 

number and circumstances around each time a vehicle had an unplanned transition from 

autonomous mode to manual mode (California Department of Motor Vehicles, 2018, p. 13). The 

disengagement reports also list the total miles traveled in autonomous mode for each vehicle for 

the prior period of December to November. Vehicle mileages by manufacturer were obtained 

from these reports as summarized by Boggs et al. (2020a) and supplemented with 2019 data from 

California Department of Motor Vehicles (2020b). 

 

3.3 Human-Driven Crash Rates 

The Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) 

data was used for a crash rate baseline. From 2012 to 2014, the SHRP 2 NDS collected over 2 

petabytes of video, kinematic, and audio data from more than 3,500 drivers via passive data 

collection systems installed in participants’ personal vehicles (Antin et al., 2019). Data was 

collected during short intervals prior to and following critical events as detected through the 

vehicles’ kinematic sensors or the driver pressing a button in the vehicle. Events are analyzed by 

trained data reductionists to identify crash attributes and driver risk factors. Data with non-

identifying information can be accessed through the InSight data portal (“SHRP2 NDS Data 

Access,” n.d.). The SHRP 2 NDS continues to evolve with changing participant anonymity 
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preferences, and so crash counts may be inconsistent if pulled at different times. All data for this 

analysis was accessed from InSight version 3.3.0 (Center for Data Reduction and Analysis 

Support, 2020), between May and June 2020. Raw crash records were queried for Event Type = 

“Crash” and Incident Type = “Rear end, struck.” InSight records up to two events per record, and 

occasionally the struck-from-behind crash would occur following a primary event such as the 

subject vehicle rear ending the lead vehicle. Both first and secondary events were queried and 

added to the database. 

The SHRP 2 NDS data was heavily weighted with younger and older drivers, both of 

whom represent high-risk groups. To ensure the data reflects national crash rates, the crashes and 

mileages must be categorized by age group and weighted by the U.S. driving population. 

Mileages and weights were obtained from Blanco et al. (2016) and reproduced in Table 2. 

 

Table 2 Age Group Sample Weights for SHRP 2 Naturalistic Driving Study Data 

Age Weight 
Percentage in 

SHRP 2 NDS 

Percentage of US 

Licensed Drivers 

Million 

miles driven 

Weighted million 

miles driven 

16-24 0.32 37 12 12.9 4.1 

25-39 1.53 17 26 6.4 9.8 

40-54 2.33 12 28 4.6 10.7 

55-74 1.35 20 27 6.3 8.5 

75+ 0.5 14 7 3.4 1.7 

Totals - 100 100 33.6 34.8 

 

3.4 Confidence Intervals 

Confidence intervals for crash rates were calculated using a Poisson distribution. Crash counts 

are well-approximated by a Poisson process, as crashes are discrete, non-negative integers—

several studies have modeled general public crashes (Jones et al., 1991; Joshua and Garber, 

1990; Kim et al., 2006; Miaou, 1994) and automated vehicle crashes (Blanco et al., 2016) as 

Poisson processes. Calculations were performed using the statistics package in GNU Octave 

(Eaton et al., 2019). Low and high crash estimates were divided by vehicle-miles traveled to 

determine crash rates. 

 Because they had access to data at the individual driver level, Blanco et al. (2016) used 

bootstrapping methods to calculate SHRP 2 NDS crash rate confidence intervals. Access to the 

individual driver records is limited to onsite retrieval at a secure terminal in Blacksburg, 

Virginia. Due to COVID-19 travel restrictions, access to these data were impractical, and instead 

a Poisson distribution was used with minimal effect on accuracy. For example, Blanco et al.’s 

95% confidence interval for all SHRP 2 NDS crashes was 2.0–3.0 (Blanco et al., 2016), while a 

Poisson distribution yielded a confidence interval of 2.0–3.1.   
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4 Results and Discussion 

Automated vehicle crash rates per million vehicle-miles traveled were compared with crash rates 

of human-driven vehicles from the SHRP 2 NDS dataset. Table 3 shows an overview of the 

crash rate comparisons.  

 

Table 3 AV and SHRP 2 NDS Struck-from-Behind Crash Rates 

Vehicles Source 

Struck-from-behind crashes  

per million vehicle-miles traveled 

Average 95% CI 

AVs CA DMV Reports 17.2 (14.2, 20.7) 

AVs, excluding late handovers CA DMV Reports 14.5 (11.7, 17.7) 

Human-driven vehicles in all 

environments 

SHRP 2 NDS 3.6 (3.0, 4.3) 

Human-driven vehicles in urban 

environments 

SHRP 2 NDS 6.6 (2.0, 16.0) 

Human-driven vehicles in 

business/industrial environments 

SHRP 2 NDS 7.6 (6.1, 9.4) 

Cruise (downtown San Francisco) CA DMV Reports 43.6 (33.5, 56.0) 

Cruise, excluding late handovers CA DMV Reports 33.1 (24.3, 44.0) 

Waymo (Mountain View) CA DMV Reports 10.4 (7.5, 14.0) 

Waymo, excluding late handovers CA DMV Reports 10.2 (7.3, 13.8) 

 

 

4.1 General Crash Rates 

When considering the entire California DMV dataset, AVs appear to be struck from behind at 

significantly higher rates (17.2, 14.2–20.7, 95% CI) than the national average of human-driven 

vehicles (3.6, 3.0–4.3, 95% CI). Eighteen of the AV crashes involved vehicles transitioning to 

manual control immediately prior to collision. These were classified as autonomous-mode 

crashes. When these late handovers are excluded from analysis, the struck-from-behind AV crash 

rate drops to 14.5 (11.7–17.7, 95% CI) crashes per million miles, which remains significantly 

higher than the crash rate of human-driven vehicles.  

 

4.2 Crash Rates over Time 

Automated vehicle technology continues to be refined through ongoing testing, and therefore 

AVs in more recent years may crash at different rates than AVs in early years. A comparison of 

struck-from-behind crash rates for all AVs, Waymo, and Cruise are shown in Figure 2. Crash 

rates do not show a clear trend over time, but instead fluctuate year to year. This fluctuation may 

be due to struck-from-behind crashes being independent of an AVs driving behavior, or instead 

that manufacturers are testing in more complex environments, negating any improvements in AV 

driving abilities. The lack of a clear crash rate trend over time aligns with total AV crash rate 

trends (Leilabadi and Schmidt, 2019). 
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Figure 2 Struck-from-behind crash rates when in autonomous mode by year for all 

developers, Waymo, and Cruise. Years with no reported crashes were excluded. 

 

4.3 Effect of Urban Driving Environments 

One reason for higher AV struck-from-behind crash rates may be the density of traffic in urban 

and commercial environments where vehicles in California often test. Cruise CEO Kyle Vogt  

(2017) has noted that their vehicles encounter 39 times more interactions in San Francisco than 

in suburban Phoenix, Arizona. More interactions with other vehicles could result in more 

opportunities for struck-from-behind crashes.  

There are a few ways to explore this theory. The first is to compare crash rates of 

companies that test in urban vs. less dense commercial environments. Of the 46 companies that 

have reported testing AVs in California, only two, Cruise and Waymo, reported more than four 

struck-from-behind crashes. While neither Cruise nor Waymo reports the general locations of 

their AV testing, both report crash locations. Figure 3 shows the locations of Cruise and Waymo 

crashes through March 2020. Nearly all Cruise crashes are in downtown San Francisco, while 

Waymo’s crashes are predominately near suburban Mountain View along commercial corridors. 

These data are supported by the National Highway Traffic Safety Administration’s (2020c) 

database of AV testing, which lists only one testing site for Cruise in San Francisco and three for 

Waymo, of which one is in Mountain View, one is on private roads and therefore not reportable 

to California DMV, and one is for limited heat testing in Death Valley National Park (Waymo, 

2017). While it is impossible to determine manufacturer AV testing locations with complete 
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certainty, the evidence suggests that most Cruise testing occurs in urban San Francisco and most 

Waymo testing occurs in suburban Mountain View along commercial corridors. 

 
Figure 3 Map of Cruise, Waymo, and other developer AV crashes as of March 2020. 

As shown in Table 3, Cruise vehicles in autonomous mode are struck from behind at 3–4 

times the rate of Waymo’s vehicles. If both manufacturers’ vehicles drive identically in traffic 

(an unsupported assumption), then Cruise’s higher crash rate suggests that struck-from-behind 

crashes may be more prevalent in urban environments. 

Another way to test this theory is to compare driving environments from the SHRP 2 

NDS data. Samples from the SHRP 2 NDS were categorized by environment, referred to as 

“localities” in the data set. These were not obtained from GPS traces, but rather from a visual 

inspection of the environment from the vehicle’s outward facing cameras. Analysts were trained 

to consistently classify these environments. 

 Table 4 shows the guidance used by data reductionists when classifying events as 

occurring in urban or business/industrial settings, the two environments closest to Cruise’s and 

Waymo’s testing environments. Guidance for classifying all 11 environments can be found in the 

SHRP 2 NDS researcher dictionary (Virginia Tech Transportation Institute, 2015).  
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Table 4 SHRP 2 NDS Guidance for Classifying Roadway as Urban or 

Business/Industrial (Virginia Tech Transportation Institute, 2015) 

Locality Guidance 

General Best description of the surroundings that influence or may influence the 

flow of traffic at the time of the start of the precipitating event. If there 

are ANY commercial buildings, indicate as business/industrial or urban 

area as appropriate (these categories take precedence over others except 

for church, school, and playground). 

Urban Higher density area where blocks are shorter, streets are a mix of one and 

two way, and traffic can include buses and trams. (This category takes 

precedence over others when either businesses and/or residences are 

present.) 

Business/Industrial Any type of business or industrial structure is present, but is not as dense 

as an Urban Locality. (If there are also houses visible, this category takes 

precedence over Open residential and Moderate residential). 

 

Localities were assigned not only to crash events, but also to randomly selected windows 

of baseline driving. The number of baseline driving samples in a particular environment were 

used to estimate an environment’s total mileage. If, for example, vehicles traveled 10 million 

total miles, and 20 percent of samples were in rural areas, then the total number of rural miles 

would be calculated as 10 million miles × 20% = 2 million rural miles.  

Table 5 shows the SHRP 2 NDS weighted struck-from-behind crash rates per million 

vehicle-mile traveled (MVMT) across different environments. Urban and industrial 

environments exhibit struck-from-behind crash rates that are 182% and 212% of the total crash 

rate, respectively. These higher crash rates suggest that the inherent dangers of urban driving 

may contribute to the higher struck-from-behind crash rate experienced by AVs. Waymo’s crash 

rate, for example, is within the 95% confidence interval for human-driven vehicles in 

business/industrial settings, suggesting that the different crash rates are not statistically 

significant. 
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Table 5 SHRP 2 NDS Crash Rates by Observed Driving Environment 

Environment 

SHRP 2 NDS Weighted 

Struck-from-Behind 

Crashes per MVMT 

95% CI 

% of 

Total 

Rate 

Open Country 0.0 (0.0, 6.6) 0 

Open Residential 0.5 (0.0, 3.0) 14 

Moderate Residential 0.6 (0.2, 1.5) 16 

Business/Industrial 7.6 (6.1, 9.4) 212 

Church 6.1 (2.0, 14.4) 170 

Playground 0.0 (0.0, 22.6) 0 

School 2.6 (0.8, 6.3) 73 

Urban 6.6 (2.0, 16.0) 182 

Interstate/Bypass/Divided Highway with 

no traffic signals 1.5 (0.9, 2.6) 43 

Bypass/Divided Highway with traffic 

signals 4.1 (1.4, 9.5) 114 

Other 0.0 (0.0, 79.1) 0 

Totals 3.6 (3.0, 4.3) 100 

 

4.4 Crash Rates When Moving vs. When Stopped 

Others have suggested that AV behavior may contribute to struck-from-behind crashes. 

Journalists observing AV demonstrations have described the vehicle’s movements as 

unsteady (Stewart, 2018). Others point out that AVs strictly adhere to traffic laws, coming to 

complete stops at stops signs and when turning right at a signalized intersections during a red 

phase (Beene, 2017; Stewart, 2018). One way to evaluate the influence of vehicle behavior on 

crash rate is to evaluate struck-from-behind crash rates for moving and stopped vehicles. Struck-

from-behind crashes while moving may be due to unexpected decelerations, while crashes while 

stopped may be due unexpected timing or locations of AV stops. 

From an analysis of the AV crash reports entry for “Stopped in Traffic” and the crash 

narrative, it appears that 30% (20 of 67) of Cruise’s crashes and 79% (37 of 47) of Waymo’s 

struck-from-behind crashes occurred when the vehicle was stopped. Table 6 shows the struck-

from-behind crash rate of both AV developers when the vehicle was both stopped and moving.  
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Table 6 Comparison of Struck-from-Behind Crash Rates while Stopped and Moving 

Stopped 

Crashes 

per MVMT 95% CI n 

Automated Vehicles 8.9 (6.7, 11.4) 58 

SHRP 2 NDS Age Weighted 0.6 (0.4, 0.9) 23.3 

SHRP 2 Urban 0.0 (0.0, 5.4) 0.0 

SHRP 2 Business/Industrial 1.8 (1.1, 2.7) 19.9 

SHRP 2 All Other Roads 0.1 (0.0, 0.4) 3.4 

Moving    

Automated Vehicles 8.4 (6.3, 10.9) 55 

SHRP 2 NDS Age Weighted 3.0 (2.5, 3.6) 104.8 

SHRP 2 Urban 6.9 (2.9, 18.3) 4.7 

SHRP 2 Business/Industrial 6.5 (6.2, 9.6) 73.4 

SHRP 2 All Other Roads 1.2 (0.8, 1.7) 26.7 

 

Differences between AV and human-driven crash rates are not significant when the 

vehicle is moving in urban or business/industrial settings. In contrast, differences are significant 

when vehicles are stopped, with AV crash rates of 8.9 (6.7–11.4, 95% CI) crashes per million 

miles when stopped, compared to 0.0 (0.0–5.4, 95% CI) for urban driving and 1.8 (1.1–2.7 95% 

CI) for business/industrial driving. These stopped crash rates suggests that any effect of AV 

behavior on struck-from-behind crashes is probably due to unexpected timing and location of 

stops and not unexpected rate or method of deceleration. These effects could be further isolated 

by determining crash rates at stops signs and right-turn-on-red movements. While a large portion 

of AVs are turning right when struck, there is no baseline data in the SHRP 2 NDS data set to 

allow a direct comparison of human crashes at stop signs or right-turn-on-red. 

 

5 Conclusions 

Automation of the driving will profoundly affect transportation both in terms of mobility and 

safety. Understanding the performance of automated driving systems, especially early 

deployments, is of profound importance. While previous studies have found AV crashes to occur 

at lower rates than those of human-driven vehicles, this is the first study to investigate struck-

from-behind crashes which represent 73% of autonomous-mode crashes. While automated 

vehicles are struck from behind at higher rates than conventional vehicles, these differences are 

reduced when considering the operating environments of AVs. Vehicles operated by Cruise 

predominately test in urban San Francisco while Waymo’s vehicles test in suburban Mountain 

View along business corridors. Human-driven crash rates from SHRP 2 NDS data for urban and 

business/industrial environments (the two closest environments to Cruise and Waymo’s testing) 

are higher than human-driven struck-from-behind crash rates generally (6.6 and 7.6 crashes per 

MVMT, respectively, compared to 3.6 generally). It is possible that the number of interactions 

captured in SHRP 2 NDS urban driving does not match the number of conflicts in downtown San 
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Francisco, one of the densest cities in the United States. Without better data on minor crash rates 

in large cities, it is impossible to rule out that the high struck-from-behind crash rates 

experienced by Cruise may simply be a factor of environment.  

 When compared to human-driven vehicles, AVs are more likely to be struck from behind 

when stopped than when moving. This suggests that, if AV behavior contributes to struck-from-

behind crashes as some have suggested, the timing and locations of AV stops rather than 

deceleration behavior may contribute to crashes. Further research on vehicle position in the 

intersection, presence of right-turn-on-red maneuvers, pedestrian presence and other contributing 

factors could further isolate the contributing factors for AV struck-from-behind crashes. 

 It should be noted that the vast majority of crashes involving automated vehicles occur at 

low speeds and result in minimal damage. A high crash rate does not necessarily indicate a 

dangerous vehicle, as many minor crashes may be preferable to a few severe ones.  

Researchers, regulators, and industry should continue to assess the safety of automated 

vehicles. Mandatory reporting of crashes and exposure (in accessible databases) simplifies these 

efforts. When governments do not mandate reporting, automated vehicle developers can post 

their own, greatly improving transparency and building trust with regulators and the public.  
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